No project description provided
Project description
monasca-statsd
================
A Monasca-Statsd Python client.
Quick Start Guide
-----------------
First install the library with `pip` or `easy_install`
# Install in system python ...
sudo pip install monasca-statsd
# .. or into a virtual env
pip install monasca-statsd
Then start instrumenting your code:
``` python
# Import the module.
from monascastatsd import monascastatsd
# Optionally, configure the host and port if you're running Statsd on a
# non-standard port.
monascastatsd.connect('localhost', 8125)
# Increment a counter.
monascastatsd.increment('page.views')
# Record a gauge 50% of the time.
monascastatsd.gauge('users.online', 123, sample_rate=0.5)
# Sample a histogram.
monascastatsd.histogram('file.upload.size', 1234)
# Time a function call.
@monascastatsd.timed('page.render')
def render_page():
# Render things ...
# Tag a metric.
monascastatsd.histogram('query.time', 10, dimensions = {"version": "1.0", "environment": "dev"})
```
Documentation
-------------
Read the full API docs
[here](https://github.com/stackforge/monasca-statsd).
Feedback
--------
To suggest a feature, report a bug, or general discussion, head over
[here](https://bugs.launchpad.net/monasca).
Change Log
----------
- 1.0.0
- Initial version of the code
License
-------
Copyright (c) 2014 Hewlett-Packard Development Company, L.P.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.
================
A Monasca-Statsd Python client.
Quick Start Guide
-----------------
First install the library with `pip` or `easy_install`
# Install in system python ...
sudo pip install monasca-statsd
# .. or into a virtual env
pip install monasca-statsd
Then start instrumenting your code:
``` python
# Import the module.
from monascastatsd import monascastatsd
# Optionally, configure the host and port if you're running Statsd on a
# non-standard port.
monascastatsd.connect('localhost', 8125)
# Increment a counter.
monascastatsd.increment('page.views')
# Record a gauge 50% of the time.
monascastatsd.gauge('users.online', 123, sample_rate=0.5)
# Sample a histogram.
monascastatsd.histogram('file.upload.size', 1234)
# Time a function call.
@monascastatsd.timed('page.render')
def render_page():
# Render things ...
# Tag a metric.
monascastatsd.histogram('query.time', 10, dimensions = {"version": "1.0", "environment": "dev"})
```
Documentation
-------------
Read the full API docs
[here](https://github.com/stackforge/monasca-statsd).
Feedback
--------
To suggest a feature, report a bug, or general discussion, head over
[here](https://bugs.launchpad.net/monasca).
Change Log
----------
- 1.0.0
- Initial version of the code
License
-------
Copyright (c) 2014 Hewlett-Packard Development Company, L.P.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
monasca-statsd-1.0.0.tar.gz
(15.8 kB
view hashes)
Built Distribution
Close
Hashes for monasca_statsd-1.0.0-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ceb814335943d448c7ea70136f04ecab6a9f6a6e8fd974ba25e1c8c19c94b52b |
|
MD5 | e4625f2ceff7be64caf58c90bdf77029 |
|
BLAKE2b-256 | f9e3d8b373dd450d8a0a96a4d7417e71e6b1377c24103dd7daf6ed5c66b3e9b3 |