Monasca statsd Python client
Project description
Openstack Monasca Statsd
A Monasca-Statsd Python Client.
Quick Start Guide
First install the library with pip or easy_install:
# Install in system python ... sudo pip install monasca-statsd # .. or into a virtual env pip install monasca-statsd
Then start instrumenting your code:
# Import the module. import monascastatsd as mstatsd # Create the connection conn = mstatsd.Connection(host='localhost', port=8125) # Create the client with optional dimensions client = mstatsd.Client(connection=conn, dimensions={'env': 'test'}) NOTE: You can also create a client without specifying the connection and it will create the client with the default connection information for the monasca-agent statsd processor daemon which uses host='localhost' and port=8125. client = mstatsd.Client(dimensions={'env': 'test'}) # Increment and decrement a counter. counter = client.get_counter(name='page.views') counter.increment() counter += 3 counter.decrement() counter -= 3 # Record a gauge 50% of the time. gauge = client.get_gauge('gauge', dimensions={'env': 'test'}) gauge.send('metric', 123.4, sample_rate=0.5) # Sample a histogram. histogram = client.get_histogram('histogram', dimensions={'test': 'True'}) histogram.send('metric', 123.4, dimensions={'color': 'red'}) # Time a function call. timer = client.get_timer() @timer.timed('page.render') def render_page(): # Render things ... pass # Time a block of code. timer = client.get_timer() with timer.time('t'): # Do stuff time.sleep(2) # Add dimensions to any metric. histogram = client.get_histogram('my_hist') histogram.send('query.time', 10, dimensions = {'version': '1.0', 'environment': 'dev'})
Feedback
To suggest a feature, report a bug, or participate in the general discussion, head over to StoryBoard.
License
See LICENSE file. Code was originally forked from Datadog’s dogstatsd-python, hence the dual license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
monasca-statsd-2.2.0.tar.gz
(23.1 kB
view details)
Built Distribution
File details
Details for the file monasca-statsd-2.2.0.tar.gz
.
File metadata
- Download URL: monasca-statsd-2.2.0.tar.gz
- Upload date:
- Size: 23.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/54.1.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 673a4fcd72d3cb9d1d07e149c66d00fb11534a4db273bdfb94fc3460a8965150 |
|
MD5 | c859de52b43bad51caea2a341b0ed6ad |
|
BLAKE2b-256 | 9b99aab0610f3896ef0d658879be85d2536b6f293fabf3eff6febb0234c51158 |
Provenance
File details
Details for the file monasca_statsd-2.2.0-py3-none-any.whl
.
File metadata
- Download URL: monasca_statsd-2.2.0-py3-none-any.whl
- Upload date:
- Size: 20.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/54.1.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a34cc48fd62f5f562ba0d21f292fb8f0627fa232f983ca9459839f43f5d50b8b |
|
MD5 | 75fcfc5d808630f4c054a6695077d208 |
|
BLAKE2b-256 | 9b66fb24d2c7ec7dc64adfdf015bc2ec4fc82dc224ef955f95c344ae60525288 |