Utility to create a monthly returns heatmap from Pandas series
Project description
monthly-returns-heatmap is a simple Python library for creating Monthly Returns Heatmap from Pandas series with ease.
Quick Start
Let’s create a returns heatmap for SPY (S&P 500 Spider ETF).
First, let’s download SPY’s daily close prices from Google finance.
from pandas_datareader import data
prices = data.get_data_google("SPY")['Close']
returns = prices.pct_change()
Next, we’ll import monthly_returns_heatmap and plot the monthly return heatmap:
import monthly_returns_heatmap as mrh
returns.plot_monthly_returns_heatmap()
# mrh.plot(returns) # <== or using direct call
Getting heatmap data only (no plotting)
heatmap = prices.get_monthly_returns_heatmap()
# heatmap = mrh.get(returns) # <== or using direct call
print(heatmap)
# prints:
Month Jan Feb Mar Apr ... Dec
Year
2010 0.000000 0.031195 0.056529 0.015470 ... 0.061271
2011 0.023300 0.034737 -0.004807 0.030413 ... 0.003117
2012 0.045498 0.043137 0.028129 -0.006751 ... 0.001759
2013 0.051190 0.012759 0.033375 0.019212 ... 0.020387
2014 -0.035248 0.045516 0.003865 0.006951 ... -0.008012
2015 -0.029629 0.056205 -0.020080 0.009834 ... -0.023096
2016 -0.049787 -0.001910 0.062943 0.003941 ... 0.014293
2017 0.017895 0.039292 -0.003087 0.009926 ... 0.000000
Get Parameters (optional)
is_prices - set to True if the data used is price data instead of returns data
eoy - set to True to add a End Of Year column with total yearly returns
Plot Parameters (optional)
title - Heatmap title (defaults to "Monthly Returns (%)")
title_color - Heatmap title color (defaults to "black")
title_size - Heatmap title font size (defaults to 12)
annot_size - Returns boxes font size (defaults to 10)
figsize - Heatmap figure size (defaults to None)
cmap - Color map (defaults to "RdYlGn")
cbar - Show color bar? (defaults to True)
square - Force squere returns boxes? (defaults to False)
is_prices - set to True if the data used is price data instead of returns data
eoy - set to True to add a End Of Year column with total yearly returns
Installation
Install monthly_returns_heatmap using pip:
$ pip install monthly_returns_heatmap --upgrade --no-cache-dir
Requirements
Python >=3.4
Pandas (tested to work with >=0.18.1)
Matplotlib (tested to work with >=1.5.3)
Seaborn (tested to work with >=0.7)
Legal Stuff
monthly-returns-heatmap is distributed under the GNU Lesser General Public License v3.0. See the LICENSE.txt file in the release for details.
P.S.
Please drop me an note with any feedback you have.
Ran Aroussi
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file monthly-returns-heatmap-0.0.8.tar.gz
.
File metadata
- Download URL: monthly-returns-heatmap-0.0.8.tar.gz
- Upload date:
- Size: 7.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f9708446286206d7a9eb9b76e01ba01d658e5cd6d705c3a8378fae43020ce1e |
|
MD5 | 5d23ec07a2bbc81acf9b72791642ccc2 |
|
BLAKE2b-256 | 5930cf684f738016280c1d039b66db86fcf4ce2c08a4774532332d804b217afa |