Skip to main content

Utility to create a monthly returns heatmap from Pandas series

Project description

Python version Travis-CI build status PyPi version PyPi status Star this repo Follow me on twitter

monthly-returns-heatmap is a simple Python library for creating Monthly Returns Heatmap from Pandas series with ease.

Changelog »


Quick Start

Let’s create a returns heatmap for SPY (S&P 500 Spider ETF).

First, let’s download SPY’s daily close prices from Google finance.

from pandas_datareader import data
prices = data.get_data_google("SPY")['Close']
returns = prices.pct_change()

Next, we’ll import monthly_returns_heatmap and plot the monthly return heatmap:

import monthly_returns_heatmap as mrh

returns.plot_monthly_returns_heatmap()
# mrh.plot(returns) # <== or using direct call
demo

Getting heatmap data only (no plotting)

heatmap = prices.get_monthly_returns_heatmap()
# heatmap = mrh.get(returns) # <== or using direct call

print(heatmap)

# prints:

Month       Jan        Feb        Mar        Apr  ...        Dec
Year
2010   0.000000   0.031195   0.056529   0.015470  ...   0.061271
2011   0.023300   0.034737  -0.004807   0.030413  ...   0.003117
2012   0.045498   0.043137   0.028129  -0.006751  ...   0.001759
2013   0.051190   0.012759   0.033375   0.019212  ...   0.020387
2014  -0.035248   0.045516   0.003865   0.006951  ...  -0.008012
2015  -0.029629   0.056205  -0.020080   0.009834  ...  -0.023096
2016  -0.049787  -0.001910   0.062943   0.003941  ...   0.014293
2017   0.017895   0.039292  -0.003087   0.009926  ...   0.000000

Get Parameters (optional)

  • is_prices - set to True if the data used is price data instead of returns data

  • eoy - set to True to add a End Of Year column with total yearly returns

Plot Parameters (optional)

  • title - Heatmap title (defaults to "Monthly Returns (%)")

  • title_color - Heatmap title color (defaults to "black")

  • title_size - Heatmap title font size (defaults to 12)

  • annot_size - Returns boxes font size (defaults to 10)

  • figsize - Heatmap figure size (defaults to None)

  • cmap - Color map (defaults to "RdYlGn")

  • cbar - Show color bar? (defaults to True)

  • square - Force squere returns boxes? (defaults to False)

  • is_prices - set to True if the data used is price data instead of returns data

  • eoy - set to True to add a End Of Year column with total yearly returns

Installation

Install monthly_returns_heatmap using pip:

$ pip install monthly_returns_heatmap --upgrade --no-cache-dir

Requirements

P.S.

Please drop me an note with any feedback you have.

Ran Aroussi

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monthly-returns-heatmap-0.0.9.tar.gz (7.7 kB view details)

Uploaded Source

File details

Details for the file monthly-returns-heatmap-0.0.9.tar.gz.

File metadata

File hashes

Hashes for monthly-returns-heatmap-0.0.9.tar.gz
Algorithm Hash digest
SHA256 ff928edfc28caf8d13d29b66b3f4a441bf3fa59f2455d825bebd03166d5fd722
MD5 de993adb61844f88a9209c0c7a044b1e
BLAKE2b-256 c924fae1b788d12f36f98c48de615ea3edd8374fcea48bf3ab4593470c542234

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page