Skip to main content

A neuron morphology IO library

Project description

MorphIO Build Status

Table of content

Installation

Dependencies

To build MorphIO from sources, the following dependencies are required:

  • cmake >= 3.2
  • libhdf5-dev
  • A C++11 compiler

Debian:

sudo apt install cmake libhdf5-dev

Red Hat:

sudo yum install cmake3.x86_64 hdf5-devel.x86_64

Max OS:

brew install hdf5 cmake

BB5

source /opt/rh/rh-python36/enable
module load gcc/5.4.0 nix/cmake/3.9.6

Installation instructions

Install as a C++ library

For manual installation:

git clone git@github.com:bluebrain/morphio.git --recursive
cd morphio
mkdir build && cd build
cmake ..
make install

To use the installed library:

find_package(MorphIO REQUIRED)

target_link_libraries(mylib MorphIO::morphio)

Install as a Python package

The python binding can directly be installed using pip:

pip install morphio

Introduction

MorphIO is a library for reading and writing neuron morphology files. It supports the following formats:

  • SWC
  • ASC (aka. neurolucida)
  • H5 v1
  • H5 v2

It provides 3 C++ classes that are the starting point of every morphology analysis:

  • Soma: contains the information related to the soma.

  • Section: a section is the succession of points between two bifurcations. To the bare minimum the Section object will contain the section type, the position and diameter of each point.

  • Morphology: the morphology object contains general information about the loaded cell but also provides accessors to the different sections.

One important concept is that MorphIO is split into a read-only part and a read/write one.

Quick summary

C++ vs Python:

  • C++ accessors become Python properties.
  • style: C++ functions are camel case while Python ones are snake case.

Include/imports

  • C++ mutable
#include <morphio/morphology.h>
#include <morphio/section.h>
#include <morphio/soma.h>
  • Python mutable
from morphio import Morphology, Section, Soma
  • C++ immutable
#include <morphio/mut/morphology.h>
#include <morphio/mut/section.h>
#include <morphio/mut/soma.h>
  • Python immutable
from morphio.mut import Morphology, Section, Soma

Read-only API

The read-only API aims at providing better performances as its internal data representation is contiguous in memory. All accessors return immutable objects.

Internally, in this API the morphology object is in fact where all data are stored. The Soma and Section classes are lightweight classes that provide views on the Morphology data.

For more convenience, all section data are accessed through properties, such as:

points = section.points
diameters = section.diameters

C++

In C++ the API is available under the morphio/mut namespace:

#include <morphio/mut/morphology.h>
#include <morphio/mut/section.h>
#include <morphio/mut/soma.h>

Python

In Python the API is available under the morphio.mut module:

from morphio.mut import Morphology, Section, Soma

Mutable Read/Write API

C++

#include <morphio/morphology.h>
#include <morphio/section.h>

int main()
{
    auto m = morphio::Morphology("sample.asc");

    auto roots = m.rootSections();

    auto first_root = roots[0];

    // iterate on sections starting at first_root
    for (auto it = first_root.depth_begin(); it != first_root.depth_end(); ++it) {
        const morphio::Section &section = *it;

        std::cout << "Section type: " << section.type()
                  << "\nSection id: " << section.id()
                  << "\nParent section id: " << section.parent().id()
                  << "\nNumber of child sections: " << section.children().size()
                  << "\nX - Y - Z - Diameter";
        for (auto i = 0u; i < section.points().size(); ++i) {
            const auto& point = section.points()[i];
            std::copy(point.begin(), point.end(), std::ostream_iterator<float>(std::cout, " "));
            std::cout << '\n' << section.diameters()[i] << '\n';
        }
        std::cout << '\n';
    }
}

Python

from morphio import Morphology

m = Morphology("sample.asc")
roots = m.root_sections
first_root = roots[0]

# iterate on sections starting at first_root
for section in first_root.iter():
    print("Section type: {}".format(section.type))
    print("Section id: {}".format(section.id))
    if not section.is_root:
       print("Parent section id: {}".format(section.parent.id))
    print("Number of child sections: {}".format(len(section.children)))
    print("X - Y - Z - Diameter")

    for point, diameter in zip(section.points, section.diameters):
        print('{} - {}'.format(point, diameter))

Creating morphologies with the mutable API

Here is a simple example to create a morphology from scratch and write it to disk

#include <morphio/mut/morphology.h>

int main()
{
    morphio::mut::Morphology morpho;
    morpho.soma()->points() = {{0, 0, 0}, {1, 1, 1}};
    morpho.soma()->diameters() = {1, 1};

    auto section = morpho.appendRootSection(
        morphio::Property::PointLevel(
            {{2, 2, 2}, {3, 3, 3}}, // x,y,z coordinates of each point
            {4, 4}, // diameter of each point
            {5, 5}),
        morphio::SectionType::SECTION_AXON); // (optional) perimeter of each point

    auto childSection = section->appendSection(
        morphio::Property::PointLevel(
            {{3, 3, 3}, {4, 4, 4}},
            {4, 4},
            {5, 5}),
        morphio::SectionType::SECTION_AXON);

    // Writing the file in the 3 formats
    morpho.write("outfile.asc");
    morpho.write("outfile.swc");
    morpho.write("outfile.h5");
}

Mutable Python

Reading morphologies

from morphio.mut import Morphology

m = Morphology("sample.asc")
roots = m.root_sections
first_root = roots[0]

# iterate on sections starting at first_root
for section in m.iter(first_root):
    print("Section type: {}".format(section.type))
    print("Section id: {}".format(section.id))
    if not m.is_root(section):
        print("Parent section id: {}".format(m.parent(section)))
    print("Number of child sections: {}".format(len(m.children(section))))
    print("X - Y - Z - Diameter")

    for point, diameter in zip(section.points, section.diameters):
        print('{} - {}'.format(point, diameter))

Creating morphologies

Here is a simple example to create a morphology from scratch and writing it to disk

from morphio import PointLevel, SectionType
from morphio.mut import Morphology

morpho = Morphology()
morpho.soma.points = [[0, 0, 0], [1, 1, 1]]
morpho.soma.diameters = [1, 1]

section = morpho.append_root_section(
    PointLevel(
        [[2, 2, 2], [3, 3, 3]],  # x, y, z coordinates of each point
        [4, 4],  # diameter of each point
        [5, 5]),
    SectionType.axon)  # (optional) perimeter of each point

child_section = section.append_section(
    PointLevel(
        [[3, 3, 3], [4, 4, 4]],
        [4, 4],
        [5, 5])) # section type is omitted -> parent section type will be used

morpho.write("outfile.asc")
morpho.write("outfile.swc")
morpho.write("outfile.h5")

Opening flags

When opening the file, modifier flags can be passed to alter the morphology representation. The following flags are supported:

  • morphio::NO_MODIFIER: This is the default flag, it will do nothing.
  • morphio::TWO_POINTS_SECTIONS: Each section gets reduce to a line made of the first and last point.
  • morphio::SOMA_SPHERE: The soma is reduced to a sphere which is the center of gravity of the real soma.
  • morphio::NO_DUPLICATES: The duplicate point are not present. It means the first point of each section is no longer the last point of the parent section.
  • morphio::NRN_ORDER: Neurite are reordered according to the NEURON simulator ordering

Multiple flags can be passed by using the standard bit flag manipulation (works the same way in C++ and Python):

C++:

#include <morphio/Morphology.h>
Morphology("myfile.asc", options=morphio::NO_DUPLICATES|morphio::NRN_ORDER)

Python:

from morphio import Morphology, Option

Morphology("myfile.asc", options=Option.no_duplicates|Option.nrn_order)

Glia

Click to expand!

MorphIO also support reading and writing glia (such as astrocytes) from/to disk according to the H5 specification https://bbpteam.epfl.ch/documentation/projects/Morphology%20Documentation/latest/h5v1.html

Python:

import morphio

# Immutable
immutable_glia = morphio.GlialCell("astrocyte.h5")

# Mutable
empty_glia = morphio.mut.GlialCell()
mutable_glia = morphio.mut.GlialCell("astrocyte.h5")

Mitochondria

Click to expand!

It is also possible to read and write mitochondria from/to the h5 files (SWC and ASC are not supported). As mitochondria can be represented as trees, one can define the concept of mitochondrial section similar to neuronal section and end up with a similar API. The morphology object has a mitochondria handle method that exposes the basic methods:

  • root_sections: returns the section ID of the starting mitochondrial section of each mitochondrion.
  • section(id): returns a given mitochondrial section
  • append_section: creates a new mitochondrial section _ depth_begin: a depth first iterator _ breadth_begin: a breadth first iterator _ upstream_begin: an upstream iterator
from morphio import MitochondriaPointLevel, PointLevel, SectionType
from morphio.mut import Morphology

morpho = Morphology()

# A neuronal section that will store mitochondria
section = morpho.append_root_section(
    PointLevel([[2, 2, 2], [3, 3, 3]], [4, 4], [5, 5]),
    SectionType.axon)

# Creating a new mitochondrion
mito_id = morpho.mitochondria.append_section(
    -1,
    MitochondriaPointLevel([section.id, section.id], # section id hosting the mitochondria point
                           [0.5, 0.6], # relative distance between the start of the section and the point
                           [10, 20] # mitochondria diameters
                           ))

# Appending a new mitochondrial section to the previous one
morpho.mitochondria.append_section(
    mito_id, MitochondriaPointLevel([0, 0, 0, 0],
                                    [0.6, 0.7, 0.8, 0.9],
                                    [20, 30, 40, 50]))

# Iteration works the same as iteration on neuronal sections
first_root = morpho.mitochondria.root_sections[0]
for section_id in morpho.mitochondria.depth_begin(first_root):
    section = morpho.mitochondria.section(section_id)
    print('relative_path_length - diameter')
    for relative_path_length, diameter in zip(section.diameters,
                                              section.relative_path_lengths):
        print("{} - {}".format(relative_path_length, diameter))

Reading mithochondria from H5 files:

from morphio import Morphology

morpho = Morphology("file_with_mithochondria.h5")

for mitochondrial_section in morpho.mitochondria.root_sections:
    print('{neurite_id}, {relative_path_lengths}, {diameters}'.format(
          neurite_id=mitochondrial_section.neurite_section_ids,
          relative_path_lengths=mitochondrial_section.relative_path_lengths,
          diameters=mitochondrial_section.diameters))

    print("Number of children: {}".format(len(mitochondrial_section.children)))

Endoplasmic reticulum

Click to expand!

Endoplasmic reticulum can also be stored and written to H5 file. The specification is part of the BBP morphology documentation There is one endoplasmic reticulum object per morphology. It contains 4 attributes. Each attribute is an array and each line refers to the value of the attribute for a specific neuronal section.

  • section_index: Each row of this dataset represents the index of a neuronal section. Each row of the other properties (eg. volume) refer to the part of the reticulum present in the corresponding section for each row.

  • volume: One column dataset indexed by section_index. Contains volumes of the reticulum per each corresponding section it lies in.

  • surface_area: Similar to the volume dataset, this dataset represents the surface area of the reticulum in each section in the section_index dataset.

  • filament_count: This 1 column dataset is composed of integers that represent the number of filaments in the segment of the reticulum lying in the section referenced by the corresponding row in the section_index dataset.

Reading endoplasmic reticula from H5 files

from morphio import Morphology

morpho = Morphology('/my/file')
reticulum = morpho.endoplasmic_reticulum
print('{indices}, {volumes}, {areas}, {counts}'.format(
    indices=reticulum.section_indices,
    volumes=reticulum.volumes,
    areas=reticulum.surface_areas,
    counts=reticulum.filament_counts))

Writing endoplasmic reticula from H5 files

neuron = Morphology()

reticulum = neuron.endoplasmic_reticulum
reticulum.section_indices = [1, 1]
reticulum.volumes = [2, 2]
reticulum.surface_areas = [3, 3]
reticulum.filament_counts = [4, 4]
neuron.write('/my/out/file.h5')  # Has to be written to h5

NeuroLucida markers

Click to expand!

A marker is an s-expression at the top level of the Neurolucida file that contains additional information about the morphology. For example:

("pia"
  (Closed)
  (MBFObjectType 5)
  (0 1 2 3)
  (3 4 5 4)
  (6 7 8 5)
  (9 10 11 6)
 )

This PR adds a Morphology.markers attribute that stores the markers found in the file. A Marker object has 3 attributes:

  • label
  • points
  • diameters.
Specification

The following s-expressions are parsed:

  • Any s-exp with a top level string. Like:

    ("pia"
    (Closed)
    (MBFObjectType 5)
    (0 1 2 3)
    (3 4 5 4)
    (6 7 8 5)
    (9 10 11 6)
    )
    
  • An sexp with one of the following top level regular expression:

    • Dot[0-9]*
    • Plus[0-9]*
    • Cross[0-9]*
    • Splat[0-9]*
    • Flower[0-9]*
    • Circle[0-9]*
    • Flower[0-9]*
    • TriStar[0-9]*
    • OpenStar[0-9]*
    • Asterisk[0-9]*
    • SnowFlake[0-9]*
    • OpenCircle[0-9]*
    • ShadedStar[0-9]*
    • FilledStar[0-9]*
    • TexacoStar[0-9]*
    • MoneyGreen[0-9]*
    • DarkYellow[0-9]*
    • OpenSquare[0-9]*
    • OpenDiamond[0-9]*
    • CircleArrow[0-9]*
    • CircleCross[0-9]*
    • OpenQuadStar[0-9]*
    • DoubleCircle[0-9]*
    • FilledSquare[0-9]*
    • MalteseCross[0-9]*
    • FilledCircle[0-9]*
    • FilledDiamond[0-9]*
    • FilledQuadStar[0-9]*
    • OpenUpTriangle[0-9]*
    • FilledUpTriangle[0-9]*
    • OpenDownTriangle[0-9]*
    • FilledDownTriangle[0-9]*

    Example:

    (FilledCircle
    (Color RGB (64, 0, 128))
    (Name "Marker 11")
    (Set "axons")
    ( -189.59    55.67    28.68     0.12)  ; 1
    )  ;  End of markers
    

ℹ️ Markers can may have only (X Y Z) specified instead of the more common (X Y Z D). In this case, diameters are set to 0.

Usage
cell = Morphology(os.path.join(_path, 'pia.asc'))
all_markers = cell.markers
pia = m.markers[0]

# fetch the label marker with the `label` attribute
assert_equal(pia.label, 'pia')

# fetch the points with the `points` attribute
assert_array_equal(pia.points,
                       [[0, 1, 2],
                        [3, 4, 5],
                        [6, 7, 8],
                        [9, 10, 11]])

# fetch the diameters with the `diameters` attribute
assert_array_equal(pia.diameters, [3, 4, 5, 6])

⚠️ Only top level markers are currently supported. This means the following nested marker won't be available the the MorphIO API.

( (Color White)  ; [10,1]
  (Dendrite)
  ( -290.87  -113.09   -16.32     2.06)  ; Root
  ( -290.87  -113.09   -16.32     2.06)  ; R, 1
  (
    ( -277.14  -119.13   -18.02     0.69)  ; R-1, 1
    ( -275.54  -119.99   -16.67     0.69)  ; R-1, 2
    (Cross  ;  [3,3]
      (Color Orange)
      (Name "Marker 3")
      ( -271.87  -121.14   -16.27     0.69)  ; 1
      ( -269.34  -122.29   -15.48     0.69)  ; 2
    )  ;  End of markers
  )
 )

Tips

Maximum number of warnings

On can control the maximum number of warnings using the command:

# Will stop displaying warnings after 100 warnings
morphio.set_maximum_warnings(100)

# Will never stop displaying warnings
morphio.set_maximum_warnings(-1)

# Warnings won't be displayed
morphio.set_maximum_warnings(0)

Specification

See https://github.com/BlueBrain/MorphIO/blob/master/doc/specification.md

H5v2

Starting at version 2.6.0, the file format h5v2 is no longer supported. If you have morphologies in this format, you can convert them to h5v1 with:

pip install "morphio<2.6" "morph-tool==2.3.0"

and then:

# single file, OUTPUT must end with `.h5`
morph-tool convert file INPUTFILE OUTPUT

# bulk conversion
morph-tool convert folder -ext h5 INPUTDIR OUTPUTDIR

Contributing

If you want to improve the project or you see any issue, every contribution is welcome. Please check the contribution guidelines for more information.

Acknowledgements

This research was supported by the EBRAINS research infrastructure, funded from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3).

License

MorphIO is licensed under the terms of the GNU Lesser General Public License version 3. Refer to COPYING.LESSER and COPYING for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MorphIO-2.6.2.tar.gz (3.5 MB view details)

Uploaded Source

Built Distributions

MorphIO-2.6.2-cp38-cp38-manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8

MorphIO-2.6.2-cp38-cp38-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

MorphIO-2.6.2-cp37-cp37m-manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m

MorphIO-2.6.2-cp37-cp37m-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

MorphIO-2.6.2-cp36-cp36m-manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m

MorphIO-2.6.2-cp36-cp36m-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file MorphIO-2.6.2.tar.gz.

File metadata

  • Download URL: MorphIO-2.6.2.tar.gz
  • Upload date:
  • Size: 3.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for MorphIO-2.6.2.tar.gz
Algorithm Hash digest
SHA256 aa1066fd5c01c9e656a99947630ef343450013cad6cbdb9e9f1077cbe185d085
MD5 c35337e546d3e81b517f18ae4f7aa74b
BLAKE2b-256 0e594d9b32494cebd5323db0ae87a603aac36d055c57e2218ce917fba5e2cf65

See more details on using hashes here.

File details

Details for the file MorphIO-2.6.2-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: MorphIO-2.6.2-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for MorphIO-2.6.2-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94402b91068c2592dc788d127effb5c0a7d6de0e12ce1b4042128cc97df6c5d6
MD5 3f3fbc7205179720c9a86a5c51571a98
BLAKE2b-256 1e996c52e69eab65578f784ff85c000385a1b11445aee6dd9516af83fd376cfc

See more details on using hashes here.

File details

Details for the file MorphIO-2.6.2-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: MorphIO-2.6.2-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for MorphIO-2.6.2-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4b4d79a679511d3b468e5d510868db7c48aa1f2ee5302086898a4c3f0d2fa071
MD5 88370e082d24827e32069ba8f3caf907
BLAKE2b-256 fbc379eb29cb73de76878c70ef0ecd6e8a90770c223e4f1edb29f66b5a116f28

See more details on using hashes here.

File details

Details for the file MorphIO-2.6.2-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: MorphIO-2.6.2-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for MorphIO-2.6.2-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 319b29f079a85a20568b7667e2382bd19842b358789d61061ebf2ba8fdaf4a3b
MD5 d20b6374d2620bd2a68807c1baaee122
BLAKE2b-256 ff1a2cb50c6bd35353afaa3335a8ddcd6bd6c402fc88a62ffabd2a8cae503330

See more details on using hashes here.

File details

Details for the file MorphIO-2.6.2-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: MorphIO-2.6.2-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for MorphIO-2.6.2-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fa587f6d5e261ffb53abdde5ad30aea345cf4301c4135325ced2ae042dbcb608
MD5 717ee8152431feb3d31080e3ee4b9965
BLAKE2b-256 72dbe7a4619731f9036c36d63685daf8ff8ba91455a021848afecd46260b3ab6

See more details on using hashes here.

File details

Details for the file MorphIO-2.6.2-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: MorphIO-2.6.2-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for MorphIO-2.6.2-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3077f4598f0a4bdd049f3fc342882feb115cca817fd2cb3350e2541ebd5bf0a3
MD5 631eef368b1e0285de7a8d8496b212ac
BLAKE2b-256 8eae8a7fde4a986d9422f811ed36b2aa597edd1ddf958d4cddd46f7aacd922e3

See more details on using hashes here.

File details

Details for the file MorphIO-2.6.2-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: MorphIO-2.6.2-cp36-cp36m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for MorphIO-2.6.2-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7b02ecf230c6afb23e242957ebe9a329820548bd40800342c498f3255630c732
MD5 3656223b902f00abce2fd072f45b09be
BLAKE2b-256 cdc3bb6d7af76188fd01a98ab35b19bb5bb10b23adfd6a7786e7970750ecc411

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page