Skip to main content

A neuron morphology IO library

Project description

license Build Status documentation status

MorphIO

Table of content

Introduction

MorphIO is a library for reading and writing neuron morphology files. It supports the following formats:

  • SWC

  • ASC (aka. neurolucida)

  • H5 v1

  • H5 v2

It provides 3 C++ classes that are the starting point of every morphology analysis:

  • Soma: contains the information related to the soma.

  • Section: a section is the succession of points between two bifurcations. To the bare minimum the Section object will contain the section type, the position and diameter of each point.

  • Morphology: the morphology object contains general information about the loaded cell but also provides accessors to the different sections.

One important concept is that MorphIO is split into a read-only part and a read/write one.

Installation

Dependencies

To build MorphIO from sources, the following dependencies are required:

  • cmake >= 3.2

  • libhdf5-dev

  • A C++11 compiler

Debian:

sudo apt install cmake libhdf5-dev

Red Hat:

sudo yum install cmake3.x86_64 hdf5-devel.x86_64

Max OS:

brew install hdf5 cmake

BB5

source /opt/rh/rh-python36/enable
module load gcc/5.4.0 nix/cmake/3.9.6

Installation instructions

Install as a C++ library

For manual installation:

git clone git@github.com:bluebrain/morphio.git --recursive
cd morphio
mkdir build && cd build
cmake ..
make install

To use the installed library:

find_package(MorphIO REQUIRED)
target_link_libraries(mylib MorphIO::morphio)
Install as a Python package

The python binding can directly be installed using pip:

pip install morphio

Usage

Quick summary

C++ vs Python:

  • C++ accessors become Python properties.

  • style: C++ functions are camel case while Python ones are snake case.

Include/imports

  • C++ mutable

#include <morphio/morphology.h>
#include <morphio/section.h>
#include <morphio/soma.h>
  • Python mutable

from morphio import Morphology, Section, Soma
  • C++ immutable

#include <morphio/mut/morphology.h>
#include <morphio/mut/section.h>
#include <morphio/mut/soma.h>
  • Python immutable

from morphio.mut import Morphology, Section, Soma

Read-only API

The read-only API aims at providing better performances as its internal data representation is contiguous in memory. All accessors return immutable objects.

Internally, in this API the morphology object is in fact where all data are stored. The Soma and Section classes are lightweight classes that provide views on the Morphology data.

For more convenience, all section data are accessed through properties, such as:

points = section.points
diameters = section.diameters
C++

In C++ the API is available under the morphio/mut namespace:

#include <morphio/mut/morphology.h>
#include <morphio/mut/section.h>
#include <morphio/mut/soma.h>
Python

In Python the API is available under the morphio.mut module:

from morphio.mut import Morphology, Section, Soma

Mutable Read/Write API

C++
#include <morphio/morphology.h>
#include <morphio/section.h>

int main()
{
    auto m = morphio::Morphology("sample.asc");

    auto roots = m.rootSections();

    auto first_root = roots[0];

    // iterate on sections starting at first_root
    for (auto it = first_root.depth_begin(); it != first_root.depth_end(); ++it) {
        const morphio::Section &section = *it;

        std::cout << "Section type: " << section.type()
                  << "\nSection id: " << section.id()
                  << "\nParent section id: " << section.parent().id()
                  << "\nNumber of child sections: " << section.children().size()
                  << "\nX - Y - Z - Diameter";
        for (auto i = 0u; i < section.points().size(); ++i) {
            const auto& point = section.points()[i];
            std::copy(point.begin(), point.end(), std::ostream_iterator<float>(std::cout, " "));
            std::cout << '\n' << section.diameters()[i] << '\n';
        }
        std::cout << '\n';
    }
}
Python
from morphio import Morphology

m = Morphology("sample.asc")
roots = m.root_sections
first_root = roots[0]

# iterate on sections starting at first_root
for section in first_root.iter():
    print("Section type: {}".format(section.type))
    print("Section id: {}".format(section.id))
    if not section.is_root:
       print("Parent section id: {}".format(section.parent.id))
    print("Number of child sections: {}".format(len(section.children)))
    print("X - Y - Z - Diameter")

    for point, diameter in zip(section.points, section.diameters):
        print('{} - {}'.format(point, diameter))
Creating morphologies with the mutable API

Here is a simple example to create a morphology from scratch and write it to disk

#include <morphio/mut/morphology.h>

int main()
{
    morphio::mut::Morphology morpho;
    morpho.soma()->points() = {{0, 0, 0}, {1, 1, 1}};
    morpho.soma()->diameters() = {1, 1};

    auto section = morpho.appendRootSection(
        morphio::Property::PointLevel(
            {{2, 2, 2}, {3, 3, 3}}, // x,y,z coordinates of each point
            {4, 4}, // diameter of each point
            {5, 5}),
        morphio::SectionType::SECTION_AXON); // (optional) perimeter of each point

    auto childSection = section->appendSection(
        morphio::Property::PointLevel(
            {{3, 3, 3}, {4, 4, 4}},
            {4, 4},
            {5, 5}),
        morphio::SectionType::SECTION_AXON);

    // Writing the file in the 3 formats
    morpho.write("outfile.asc");
    morpho.write("outfile.swc");
    morpho.write("outfile.h5");
}

Mutable Python

Reading morphologies
from morphio.mut import Morphology

m = Morphology("sample.asc")
roots = m.root_sections
first_root = roots[0]

# iterate on sections starting at first_root
for section in m.iter(first_root):
    print("Section type: {}".format(section.type))
    print("Section id: {}".format(section.id))
    if not m.is_root(section):
        print("Parent section id: {}".format(m.parent(section)))
    print("Number of child sections: {}".format(len(m.children(section))))
    print("X - Y - Z - Diameter")

    for point, diameter in zip(section.points, section.diameters):
        print('{} - {}'.format(point, diameter))
Creating morphologies

Here is a simple example to create a morphology from scratch and writing it to disk

from morphio import PointLevel, SectionType
from morphio.mut import Morphology

morpho = Morphology()
morpho.soma.points = [[0, 0, 0], [1, 1, 1]]
morpho.soma.diameters = [1, 1]

section = morpho.append_root_section(
    PointLevel(
        [[2, 2, 2], [3, 3, 3]],  # x, y, z coordinates of each point
        [4, 4],  # diameter of each point
        [5, 5]),
    SectionType.axon)  # (optional) perimeter of each point

child_section = section.append_section(
    PointLevel(
        [[3, 3, 3], [4, 4, 4]],
        [4, 4],
        [5, 5])) # section type is omitted -> parent section type will be used

morpho.write("outfile.asc")
morpho.write("outfile.swc")
morpho.write("outfile.h5")

Opening flags

When opening the file, modifier flags can be passed to alter the morphology representation. The following flags are supported:

  • morphio::NO_MODIFIER: This is the default flag, it will do nothing.

  • morphio::TWO_POINTS_SECTIONS: Each section gets reduce to a line made of the first and last

    point.

  • morphio::SOMA_SPHERE: The soma is reduced to a sphere which is the center of gravity of the

    real soma.

  • morphio::NO_DUPLICATES: The duplicate point are not present. It means the first point of

    each section is no longer the last point of the parent section.

  • morphio::NRN_ORDER: Neurite are reordered according to the

    NEURON simulator ordering

Multiple flags can be passed by using the standard bit flag manipulation (works the same way in C++ and Python):

C++:

#include <morphio/Morphology.h>
Morphology("myfile.asc", options=morphio::NO_DUPLICATES|morphio::NRN_ORDER)

Python:

from morphio import Morphology, Option

Morphology("myfile.asc", options=Option.no_duplicates|Option.nrn_order)

Glia

MorphIO also support reading and writing glia (such as astrocytes) from/to disk according to the H5 specification

import morphio

# Immutable
immutable_glia = morphio.GlialCell("astrocyte.h5")

# Mutable
empty_glia = morphio.mut.GlialCell()
mutable_glia = morphio.mut.GlialCell("astrocyte.h5")

Mitochondria

It is also possible to read and write mitochondria from/to the h5 files (SWC and ASC are not supported). As mitochondria can be represented as trees, one can define the concept of mitochondrial section similar to neuronal section and end up with a similar API. The morphology object has a mitochondria handle method that exposes the basic methods:

  • root_sections: returns the section ID of the starting mitochondrial section of each

    mitochondrion.

  • section(id): returns a given mitochondrial section

  • append_section: creates a new mitochondrial section

  • depth_begin: a depth first iterator

  • breadth_begin: a breadth first iterator

  • upstream_begin: an upstream iterator

from morphio import MitochondriaPointLevel, PointLevel, SectionType
from morphio.mut import Morphology

morpho = Morphology()

# A neuronal section that will store mitochondria
section = morpho.append_root_section(
  PointLevel([[2, 2, 2], [3, 3, 3]], [4, 4], [5, 5]),
  SectionType.axon)

# Creating a new mitochondrion
mito_id = morpho.mitochondria.append_section(
  -1,
  MitochondriaPointLevel([section.id, section.id], # section id hosting the mitochondria point
                         [0.5, 0.6], # relative distance between the start of the section and the point
                         [10, 20] # mitochondria diameters
                         ))

# Appending a new mitochondrial section to the previous one
morpho.mitochondria.append_section(
  mito_id, MitochondriaPointLevel([0, 0, 0, 0],
                                  [0.6, 0.7, 0.8, 0.9],
                                  [20, 30, 40, 50]))

# Iteration works the same as iteration on neuronal sections
first_root = morpho.mitochondria.root_sections[0]
for section_id in morpho.mitochondria.depth_begin(first_root):
  section = morpho.mitochondria.section(section_id)
  print('relative_path_length - diameter')
  for relative_path_length, diameter in zip(section.diameters,
                                            section.relative_path_lengths):
      print("{} - {}".format(relative_path_length, diameter))

Reading mithochondria from H5 files:

from morphio import Morphology

morpho = Morphology("file_with_mithochondria.h5")

for mitochondrial_section in morpho.mitochondria.root_sections:
  print('{neurite_id}, {relative_path_lengths}, {diameters}'.format(
        neurite_id=mitochondrial_section.neurite_section_ids,
        relative_path_lengths=mitochondrial_section.relative_path_lengths,
        diameters=mitochondrial_section.diameters))

  print("Number of children: {}".format(len(mitochondrial_section.children)))

Endoplasmic reticulum

Endoplasmic reticulum can also be stored and written to H5 file. The specification is part of the BBP morphology documentation There is one endoplasmic reticulum object per morphology. It contains 4 attributes. Each attribute is an array and each line refers to the value of the attribute for a specific neuronal section.

  • section_index: Each row of this dataset represents the index of a neuronal section. Each row of

    the other properties (eg. volume) refer to the part of the reticulum present in the corresponding section for each row.

  • volume: One column dataset indexed by section_index. Contains volumes of the reticulum per each

    corresponding section it lies in.

  • surface_area: Similar to the volume dataset, this dataset represents the surface area of the

    reticulum in each section in the section_index dataset.

  • filament_count: This 1 column dataset is composed of integers that represent the number of

    filaments in the segment of the reticulum lying in the section referenced by the corresponding row in the section_index dataset.

Reading endoplasmic reticula from H5 files
from morphio import Morphology

morpho = Morphology('/my/file')
reticulum = morpho.endoplasmic_reticulum
print('{indices}, {volumes}, {areas}, {counts}'.format(
  indices=reticulum.section_indices,
  volumes=reticulum.volumes,
  areas=reticulum.surface_areas,
  counts=reticulum.filament_counts))
Writing endoplasmic reticula from H5 files
neuron = Morphology()

reticulum = neuron.endoplasmic_reticulum
reticulum.section_indices = [1, 1]
reticulum.volumes = [2, 2]
reticulum.surface_areas = [3, 3]
reticulum.filament_counts = [4, 4]
neuron.write('/my/out/file.h5')  # Has to be written to h5

NeuroLucida markers

A marker is an s-expression at the top level of the Neurolucida file that contains additional information about the morphology. For example:

("pia"
  (Closed)
  (MBFObjectType 5)
  (0 1 2 3)
  (3 4 5 4)
  (6 7 8 5)
  (9 10 11 6)
 )

This PR adds a Morphology.markers attribute that stores the markers found in the file. A Marker object has 3 attributes: - label - points - diameters.

Specification

The following s-expressions are parsed:

  • Any s-exp with a top level string. Like:

    ("pia"
    (Closed)
    (MBFObjectType 5)
    (0 1 2 3)
    (3 4 5 4)
    (6 7 8 5)
    (9 10 11 6)
    )
  • An sexp with one of the following top level regular expression:

    • Dot[0-9]*

    • Plus[0-9]*

    • Cross[0-9]*

    • Splat[0-9]*

    • Flower[0-9]*

    • Circle[0-9]*

    • Flower[0-9]*

    • TriStar[0-9]*

    • OpenStar[0-9]*

    • Asterisk[0-9]*

    • SnowFlake[0-9]*

    • OpenCircle[0-9]*

    • ShadedStar[0-9]*

    • FilledStar[0-9]*

    • TexacoStar[0-9]*

    • MoneyGreen[0-9]*

    • DarkYellow[0-9]*

    • OpenSquare[0-9]*

    • OpenDiamond[0-9]*

    • CircleArrow[0-9]*

    • CircleCross[0-9]*

    • OpenQuadStar[0-9]*

    • DoubleCircle[0-9]*

    • FilledSquare[0-9]*

    • MalteseCross[0-9]*

    • FilledCircle[0-9]*

    • FilledDiamond[0-9]*

    • FilledQuadStar[0-9]*

    • OpenUpTriangle[0-9]*

    • FilledUpTriangle[0-9]*

    • OpenDownTriangle[0-9]*

    • FilledDownTriangle[0-9]*

    Example:

    (FilledCircle
    (Color RGB (64, 0, 128))
    (Name "Marker 11")
    (Set "axons")
    ( -189.59    55.67    28.68     0.12)  ; 1
    )  ;  End of markers

ℹ️ Markers can may have only (X Y Z) specified instead of the more common (X Y Z D). In this case, diameters are set to 0.

Usage

⚠️ Only top level markers are currently supported. This means the following nested marker won’t be available the the MorphIO API.

( (Color White)  ; [10,1]
  (Dendrite)
  ( -290.87  -113.09   -16.32     2.06)  ; Root
  ( -290.87  -113.09   -16.32     2.06)  ; R, 1
  (
    ( -277.14  -119.13   -18.02     0.69)  ; R-1, 1
    ( -275.54  -119.99   -16.67     0.69)  ; R-1, 2
    (Cross  ;  [3,3]
      (Color Orange)
      (Name "Marker 3")
      ( -271.87  -121.14   -16.27     0.69)  ; 1
      ( -269.34  -122.29   -15.48     0.69)  ; 2
    )  ;  End of markers
  )
 )

Tips

Maximum number of warnings

On can control the maximum number of warnings using the command:

# Will stop displaying warnings after 100 warnings
morphio.set_maximum_warnings(100)

# Will never stop displaying warnings
morphio.set_maximum_warnings(-1)

# Warnings won't be displayed
morphio.set_maximum_warnings(0)

Specification

See https://github.com/BlueBrain/MorphIO/blob/master/doc/specification.md

H5v2

Starting at version 2.6.0, the file format h5v2 is no longer supported. If you have morphologies in this format, you can convert them to h5v1 with:

pip install "morphio<2.6" "morph-tool==2.3.0"

and then:

# single file, OUTPUT must end with `.h5`
morph-tool convert file INPUTFILE OUTPUT
# bulk conversion
morph-tool convert folder -ext h5 INPUTDIR OUTPUTDIR

Contributing

If you want to improve the project or you see any issue, every contribution is welcome. Please check the contribution guidelines for more information.

Acknowledgements

This research was supported by the EBRAINS research infrastructure, funded from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3).

License

MorphIO is licensed under the terms of the GNU Lesser General Public License version 3. Refer to COPYING.LESSER and COPYING for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MorphIO-3.0.0.tar.gz (3.8 MB view details)

Uploaded Source

Built Distributions

MorphIO-3.0.0-cp38-cp38-manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8

MorphIO-3.0.0-cp38-cp38-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

MorphIO-3.0.0-cp37-cp37m-manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m

MorphIO-3.0.0-cp37-cp37m-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

MorphIO-3.0.0-cp36-cp36m-manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m

MorphIO-3.0.0-cp36-cp36m-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file MorphIO-3.0.0.tar.gz.

File metadata

  • Download URL: MorphIO-3.0.0.tar.gz
  • Upload date:
  • Size: 3.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for MorphIO-3.0.0.tar.gz
Algorithm Hash digest
SHA256 16862f2a97cf25a3874f1887106f05049de3ac8d08d4a16233d2cf1853383337
MD5 a585a6aca08679e0b8e5e88801c9e0d9
BLAKE2b-256 8c23fbd31605e568ec632bae2cec033ffcb4166c140ff12e99f31b58fe7bdf0d

See more details on using hashes here.

File details

Details for the file MorphIO-3.0.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: MorphIO-3.0.0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for MorphIO-3.0.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f8fabc940ff61c0c5356c0eeff627fd72e6c060e16b47ae5633d86329c06379
MD5 3087636326064443ec6a5420b5e7e1f6
BLAKE2b-256 1ea2621098e10da6d413cf6522738d753964f29c9f6dc6daa1baeb3357bb9b1a

See more details on using hashes here.

File details

Details for the file MorphIO-3.0.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: MorphIO-3.0.0-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for MorphIO-3.0.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c51500a9a54f7aef5abdddc377518dafeb8459b602d5cddc7eaf238c14b27997
MD5 a76d24009703efe2a00673d988e24586
BLAKE2b-256 7ad6a4d7efe3d8180cdc17c0d9081602f74097aed305a317ddccd16f22975874

See more details on using hashes here.

File details

Details for the file MorphIO-3.0.0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: MorphIO-3.0.0-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for MorphIO-3.0.0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd163f3a5320b118cd80ac37ea4f926519d374be0c00c167b676dcd1162c5cc0
MD5 d44989bde988f51462c9b3740b9a266e
BLAKE2b-256 70da878e0ee5e9c6407026429508b406d08cb235e562993c5bd016e613a6a538

See more details on using hashes here.

File details

Details for the file MorphIO-3.0.0-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: MorphIO-3.0.0-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for MorphIO-3.0.0-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e56cc1e6b27c4265d21f917fd835753f304046c2f8d21fc6e6842a7bcb073513
MD5 e6b1adda82d480a5a4b26e47934dc51d
BLAKE2b-256 88da0e68359f7c2de4480ef8e662bd5714edf5dbe5b651bbe5c24152f44b0ae7

See more details on using hashes here.

File details

Details for the file MorphIO-3.0.0-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: MorphIO-3.0.0-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for MorphIO-3.0.0-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73f65f25cd2dcb157efa542ed114272b51d7f46a288e4e44cf39dad2214d6d56
MD5 747be323e2e881103fd4f4e7fb6a9ab2
BLAKE2b-256 f362161624e3dd22972ee5dc9df98b3ed35182b224c8777e6ee08eeddccbfff9

See more details on using hashes here.

File details

Details for the file MorphIO-3.0.0-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: MorphIO-3.0.0-cp36-cp36m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for MorphIO-3.0.0-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0ff0b56a1f6f0758c2c22f1b9818d4990bce6ea547ce5921a2bb20aaccd8d423
MD5 75d871758182021eac38cdf1113eb57b
BLAKE2b-256 74f5fed50d581bd59162893bb6e65df8e822b9f746cf22b32d92bca29e09b899

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page