Skip to main content

MountainSort 5 spike sorting algorithm

Project description

MountainSort 5

latest-release tests codecov

This is the most recent version of the MountainSort spike sorting algorithm. An implementation of the previous version of this algorithm can be found here.

  • Uses Isosplit clustering
  • Runs faster than previous versions, especially for large channel counts
  • Better handles time-overlapping events and drifting waveforms
  • Runs fast on CPU
  • Uses SpikeInterface for I/O and preprocessing
  • Supports multiple sorting schemes, each suited for different experimental setups

image

Installation

pip install --upgrade mountainsort5

Dependencies:

Python, SpikeInterface, scikit-learn, isosplit6

Usage

MountainSort5 utilizes SpikeInterface recording and sorting objects. See the SpikeInterface documentation to learn how you can load and preprocess your ephys data.

Once you have loaded a SpikeInterface recording object, you can run MountainSort5 using the following code:

from tempfile import TemporaryDirectory
import numpy as np
import spikeinterface as si
import spikeinterface.preprocessing as spre
import mountainsort5 as ms5
from mountainsort5.util import create_cached_recording

recording = ... # load your recording using SpikeInterface

# Make sure the recording is preprocessed appropriately

# Note that if the recording traces are of float type, you may need to scale
# it to a reasonable voltage range in order for whitening to work properly
# recording = spre.scale(recording, gain=...)

# lazy preprocessing
recording_filtered = spre.bandpass_filter(recording, freq_min=300, freq_max=6000, dtype=np.float32)
recording_preprocessed: si.BaseRecording = spre.whiten(recording_filtered)

with TemporaryDirectory(dir='/tmp') as tmpdir:
    # cache the recording to a temporary directory for efficient reading
    recording_cached = create_cached_recording(recording_preprocessed, folder=tmpdir)

    # use scheme 1
    sorting = ms5.sorting_scheme1(
        recording=recording_cached,
        sorting_parameters=ms5.Scheme1SortingParameters(...)
    )

    # or use scheme 2
    sorting = ms5.sorting_scheme2(
        recording=recording_cached,
        sorting_parameters=ms5.Scheme2SortingParameters(...)
    )

    # or use scheme 3
    sorting = ms5.sorting_scheme3(
        recording=recording_cached,
        sorting_parameters=ms5.Scheme3SortingParameters(...)
    )

# Now you have a sorting object that you can save to disk or use for further analysis

To give it a try with simulated data, run the following scripts in the examples directory:

Scheme 1: examples/scheme1/toy_example.py

Scheme 2: examples/scheme2/toy_example.py

Scheme 3: examples/scheme3/toy_example.py

Preprocessing

MountainSort5 is designed to operate on preprocessed data. You should bandpass filter and whiten the recording as shown in the examples. SpikeInterface provides a variety of lazy preprocessing tools so that intermediate files do not need to be stored to disk.

Sorting schemes

MountainSort5 is organized into three sorting schemes. Different schemes are appropriate for different experimental setups.

Sorting scheme 1

This is the simplest sorting scheme and is useful for quick tests. The entire recording is loaded into memory, and clustering is performed in a single pass. In general, scheme 1 should only be used for testing and debugging as scheme 2 does a better job handling events that overlap in time, and works with larger datasets on limited RAM systems. Scheme 1 is used as a first pass in scheme 2, so reading about the parameters of scheme 1 will help you understand the other schemes better.

Read more about scheme 1

Sorting scheme 2

The second sorting scheme is generally preferred over scheme 1 because it can handle larger datasets that cannot be fully loaded into memory, and also has other advantages in terms of accurately detecting and labeling spikes.

In phase 1, the first scheme is used as a training step, performing unsupervised clustering on a subset of the dataset. Then in phase 2, a set of classifiers are trained based on the labels of the training step. The classifiers are then used to label the spikes in the entire recording.

Read more about scheme 2

Sorting scheme 3

Sorting scheme 3 is designed to handle long recordings that may involve waveform drift. The recording is divided into blocks, and each block is spike sorted using scheme 2. Then the snippet classifiers for the blocks are used to associate matching units between blocks.

Read more about scheme 3

Citing MountainSort

For now, please cite the original MountainSort paper that corresponds to a previous version:

@article{chung2017fully,
  title={A fully automated approach to spike sorting},
  author={Chung, Jason E and Magland, Jeremy F and Barnett, Alex H and Tolosa, Vanessa M and Tooker, Angela C and Lee, Kye Y and Shah, Kedar G and Felix, Sarah H and Frank, Loren M and Greengard, Leslie F},
  journal={Neuron},
  volume={95},
  number={6},
  pages={1381--1394},
  year={2017},
  publisher={Elsevier}
}

In addition, if you use the SpikeInterface framework, please cite the following paper:

@article{buccino2020spikeinterface,
  title={SpikeInterface, a unified framework for spike sorting},
  author={Buccino, Alessio Paolo and Hurwitz, Cole Lincoln and Garcia, Samuel and Magland, Jeremy and Siegle, Joshua H and Hurwitz, Roger and Hennig, Matthias H},
  journal={Elife},
  volume={9},
  pages={e61834},
  year={2020},
  publisher={eLife Sciences Publications Limited}
}

Contributing

Feel free to open an issue or pull request if you have any questions or suggestions.

Please star this repository if you find it useful!

Authors

Jeremy Magland, Center for Computational Mathematics, Flatiron Institute

Acknowledgements

Thank you to Loren Frank and members of his lab for their support of this project at all stages of development.

Thank you to Alex Barnett, Leslie Greengard, and Jason Chung for their work on the original Isosplit and MountainSort algorithms.

Thank you to the SpikeInterface team, especially Alessio Buccino and Samuel Garcia, for their work on the SpikeInterface framework, which supports pre- and post-processing and makes it easy to use MountainSort5 with a variety of file formats.

Thank you to Jeff Soules for his work on sortingview and related visualization tools that make it possible to inspect the results of MountainSort5 and other algorithms.

Finally, thank you to all the users of the previous version of MountainSort who have provided feedback and suggestions.

License

Apache-2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mountainsort5-0.5.5.tar.gz (30.5 kB view details)

Uploaded Source

Built Distribution

mountainsort5-0.5.5-py3-none-any.whl (34.8 kB view details)

Uploaded Python 3

File details

Details for the file mountainsort5-0.5.5.tar.gz.

File metadata

  • Download URL: mountainsort5-0.5.5.tar.gz
  • Upload date:
  • Size: 30.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for mountainsort5-0.5.5.tar.gz
Algorithm Hash digest
SHA256 9227ef2a58ff06633789c8fbdbe005468b924c863887954e67ac0dd60009c624
MD5 2a3b73c4d7230f6f6872460ecc3312f1
BLAKE2b-256 9676438b149f66a0e2dcb924c7e50c34032cb57896a886af41fa88e17fd91011

See more details on using hashes here.

File details

Details for the file mountainsort5-0.5.5-py3-none-any.whl.

File metadata

File hashes

Hashes for mountainsort5-0.5.5-py3-none-any.whl
Algorithm Hash digest
SHA256 5071defcf001c763745f447ce18813ff67213fff65ad81efae4e5857bab34542
MD5 6acc2a353d0f9482136ff517b0db4a72
BLAKE2b-256 588be91334710d1b0345345e1c2c1a9e0394a14043cd3ab2fa115e11243fe7da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page