Skip to main content

Matplotlib aware interact functions

Project description

mpl_interactions

All Contributors

Documentation StatusBinder (Warning: The interactions will be laggy when on binder)

Welcome!

mpl_interactions' library provides helpful ways to interact with Matplotlib plots. A summary of key components can be found below. Fuller narrative, further examples, and more information can be found on ReadtheDocs.

There are three submodules:

pyplot

Control Matplotlib plots using sliders and other widgets to adjust the parameters of the functions you are plotting. If working in a notebook then ipywidgets will be used to make the sliders, otherwise Matplotlib widgets will be used.

This is a different approach to controlling plots with sliders than ipywidgets.interact as when using interact you are responsible for:

  1. Defining the function to plot f(x,...) => y
  2. Handling the plotting logic (plt.plot, fig.cla, ax.set_ylim, etc)

In contrast, with mpl-interactions you only need to provide f(x, ...) => y and the plotting and updating boilerplate are handled for you.

x = np.linspace(0,6,100)
beta = np.linspace(0,5*np.pi)
def f(x, beta):
    return np.sin(x*4+beta)
interactive_plot(f, x=x, beta=beta)

These functions are designed to be used with ipympl, the backend that is designed for use in Jupyter Notebooks. So for optimal performance, make sure you set the backend with %matplotlib ipympl. That said, these functions will also work with any interactive backend (e.g. %matplotlib qt5).

generic

Provides ways to interact with Matplotlib that will work outside of a Jupyter Notebook; this should work equally well with any backend.

  1. A very niche (but very cool) way to compare 2D heatmaps
  2. Scroll to zoom
  3. Middle click to pan

utils

This module includes utility functions to make things just that little bit easier.

  1. ioff as a context manager
from mpl_interactions.utils import ioff
with ioff:
    # interactive mode will be off
    fig = plt.figure()
    # other stuff
# interactive mode will be on
  1. figure that accepts a scalar for figsize (this will scale the default dimensions)
from mpl_interactions.utils import figure
fig = figure(3)
# the default figsize is [6.4, 4.8], this figure will have figsize = [6.4*3, 4.8*3]
  1. nearest_idx -- avoid ever having to write np.argmin(np.abs(arr - value)) again

Installation

pip install mpl_interactions

# if using jupyterlab
conda install -c conda-forge nodejs=13
jupyter labextension install @jupyter-widgets/jupyterlab-manager

If you use JupyterLab, make sure you follow the full instructions in the ipympl readme in particular installing jupyterlab-manager.

Contributing / feature requests / roadmap

I use the GitHub issues to keep track of ideas I have, so looking through those should serve as a roadmap of sorts. For the most part I add to the library when I create a function that is useful for the science I am doing. If you create something that seems useful a PR would be most welcome so we can share it easily with more people. I'm also open to feature requests if you have an idea.

Documentation

The fuller narrative documentation can be found on ReadTheDocs. You may also find it helpful to check out the examples directory.

Examples with GIFs!

Tragically, neither GitHub nor the sphinx documentation render the actual moving plots so instead, here are gifs of the functions. The code for these can be found in the notebooks in the examples directory.

interactive_plot

Easily make a line plot interactive:

heatmap_slicer

Compare vertical and horizontal slices across multiple heatmaps:

scrolling zoom + middle click pan

Contributors ✨

Thanks goes to these wonderful people (emoji key):


Ian Hunt-Isaak

💻

Sam

📖

Jenny Coulter

📓

Sabina Haque

📖 📓 💻

John Russell

💻 📓 📖

This project follows the all-contributors specification. Contributions of any kind welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mpl_interactions-0.13.0.tar.gz (33.2 MB view details)

Uploaded Source

Built Distribution

mpl_interactions-0.13.0-py3-none-any.whl (37.0 kB view details)

Uploaded Python 3

File details

Details for the file mpl_interactions-0.13.0.tar.gz.

File metadata

  • Download URL: mpl_interactions-0.13.0.tar.gz
  • Upload date:
  • Size: 33.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.9.0

File hashes

Hashes for mpl_interactions-0.13.0.tar.gz
Algorithm Hash digest
SHA256 f18e541afb86512cb7bd307712233bf5830f65dbbab768870ed07d48757a39cb
MD5 4dec18d93d04008cebb5c83a8920c45c
BLAKE2b-256 802a738aa6b6fc12cbb9b10f6d1183ac4429986376104c52b098c6f8d0220afb

See more details on using hashes here.

File details

Details for the file mpl_interactions-0.13.0-py3-none-any.whl.

File metadata

  • Download URL: mpl_interactions-0.13.0-py3-none-any.whl
  • Upload date:
  • Size: 37.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.9.0

File hashes

Hashes for mpl_interactions-0.13.0-py3-none-any.whl
Algorithm Hash digest
SHA256 efac855320e9099d859b42df9ac4824356d3e1607555ace38870381ada746ade
MD5 e93c8d8faa286429fd33e76fb12e8b0f
BLAKE2b-256 eafee75211adc4db58be7777bb5c1d6ce4a75e6035551b91b1777b1523a29e79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page