Skip to main content

MS2PIP: Accurate and versatile peptide fragmentation spectrum prediction.

Project description

https://github.com/compomics/ms2pip_c/raw/releases/img/ms2pip_logo_1000px.png

https://img.shields.io/github/v/release/compomics/ms2pip_c?include_prereleases&style=flat-square https://img.shields.io/pypi/v/ms2pip?style=flat-square https://img.shields.io/github/actions/workflow/status/compomics/ms2pip_c/test.yml?branch=releases&label=tests&style=flat-square https://img.shields.io/github/actions/workflow/status/compomics/ms2pip_c/build_and_publish.yml?style=flat-square https://img.shields.io/github/issues/compomics/ms2pip_c?style=flat-square https://img.shields.io/github/last-commit/compomics/ms2pip_c?style=flat-square https://img.shields.io/github/license/compomics/ms2pip_c?style=flat-square https://img.shields.io/twitter/follow/compomics?style=social

MS²PIP: MS2 Peak Intensity Prediction - Fast and accurate peptide fragmentation spectrum prediction for multiple fragmentation methods, instruments and labeling techniques.


About

MS²PIP is a tool to predict MS2 peak intensities from peptide sequences. The result is a predicted peptide fragmentation spectrum that accurately resembles its observed equivalent. These predictions can be used to validate peptide identifications, generate proteome-wide spectral libraries, or to select discriminative transitions for targeted proteomics. MS²PIP employs the XGBoost machine learning algorithm and is written in Python and C.

https://raw.githubusercontent.com/compomics/ms2pip/v4.0.0/img/mirror-DVAQIFNNILR-2.png

Mirror plot of an observed (top) and MS²PIP-predicted (bottom) spectrum for the peptide DVAQIFNNILR/2.

You can install MS²PIP on your machine by following the installation instructions. For a more user-friendly experience, go to the MS²PIP web server. There, you can easily upload a list of peptide sequences, after which the corresponding predicted MS2 spectra can be downloaded in multiple file formats. The web server can also be contacted through the RESTful API.

The MS³PIP Python application can perform the following tasks:

  • predict-single: Predict fragmentation spectrum for a single peptide and optionally visualize the spectrum.

  • predict-batch: Predict fragmentation spectra for a batch of peptides.

  • predict-library: Predict a spectral library from protein FASTA file.

  • correlate: Compare predicted and observed intensities and optionally compute correlations.

  • get-training-data: Extract feature vectors and target intensities from observed spectra for training.

MS²PIP supports a wide range of PSM input formats and spectrum output formats, and includes pre-trained models for multiple fragmentation methods, instruments and labeling techniques. See Usage for more information.

Citations

If you use MS²PIP for your research, please cite the following publication:

  • Declercq, A., Bouwmeester, R., Chiva, C., Sabidó, E., Hirschler, A., Carapito, C., Martens, L., Degroeve, S., Gabriels, R. (2023). Updated MS²PIP web server supports cutting-edge proteomics applications. Nucleic Acids Research doi:10.1093/nar/gkad335

Prior MS²PIP publications:

  • Gabriels, R., Martens, L., & Degroeve, S. (2019). Updated MS²PIP web server delivers fast and accurate MS2 peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Research doi:10.1093/nar/gkz299

  • Degroeve, S., Maddelein, D., & Martens, L. (2015). MS²PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation. _Nucleic Acids Research, 43(W1), W326–W330. doi:10.1093/nar/gkv542

  • Degroeve, S., & Martens, L. (2013). MS²PIP: a tool for MS/MS peak intensity prediction. Bioinformatics (Oxford, England), 29(24), 3199–203. doi:10.1093/bioinformatics/btt544

Please also take note of, and mention, the MS²PIP version you used.

Full documentation

The full documentation, including installation instructions, usage examples, and the command-line and Python API reference, can be found at ms2pip.readthedocs.io.

Contributing

Bugs, questions or suggestions? Feel free to post an issue in the issue tracker or to make a pull request. Any contribution, small or large, is welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ms2pip-4.0.0.dev11.tar.gz (5.5 MB view details)

Uploaded Source

Built Distributions

ms2pip-4.0.0.dev11-cp311-cp311-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

ms2pip-4.0.0.dev11-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev11-cp311-cp311-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

ms2pip-4.0.0.dev11-cp310-cp310-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

ms2pip-4.0.0.dev11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev11-cp310-cp310-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

ms2pip-4.0.0.dev11-cp39-cp39-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

ms2pip-4.0.0.dev11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev11-cp39-cp39-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

ms2pip-4.0.0.dev11-cp38-cp38-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

ms2pip-4.0.0.dev11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev11-cp38-cp38-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file ms2pip-4.0.0.dev11.tar.gz.

File metadata

  • Download URL: ms2pip-4.0.0.dev11.tar.gz
  • Upload date:
  • Size: 5.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for ms2pip-4.0.0.dev11.tar.gz
Algorithm Hash digest
SHA256 684f40e9c34cb437212cdb4fc2ca3c52f7ac22d1cb20470a4a77619ecf247fd8
MD5 716162d38be3dd4bb0e165fccf145472
BLAKE2b-256 43b6c0b60f46f1d1b276231f88f679bc9640ea932423f9d94d4ad8f95f1bd345

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 08744b59355174d0f65a2b917fa22d24f268c3bddfc2bebb5625710ba3a026f8
MD5 09314be8235beb737798307bb3b419db
BLAKE2b-256 5affff5e7b1fcab8b96b91d2819d17589a1266d9c4304c81a22901593d600579

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4446bbec9325a897109bea5cd388df468d312f63ecca17099168edfcaf48f5f5
MD5 13e4a5b6eff18b12458f82d159361c34
BLAKE2b-256 6c13f8dff75b4d3b7c20728298028db99c5aceed70bea1e11649bd8bbcd398b2

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6789fef68da6f4f5c831255e986bf033384373cb20de1e0390ce65cf0f2daf8e
MD5 98bf580c28a4e1e56e3b8f8586fdc454
BLAKE2b-256 883875aa1c61401cfddde7bd4a69de518124c685f04c67a7f43ba466522cc949

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2e096afec75ea4c41d27f25a2a03cf8c255fdb7ef950af8eefdbf87cc6c9846c
MD5 b73bb3eb6b5e75e2912adfe902b58242
BLAKE2b-256 fb1688c2e9aefba0e4596cf1c18722aebff4e85b0a835e6cc3a2ad957e21a69e

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ecf871e3b3c338f3af325c6561e76807604f2ac31c9b8ff5817a7226fabf6492
MD5 fc334550dd13d9e67ee5a03b9fcd6dd3
BLAKE2b-256 d7a12389dc554c7591f8b20b12a0b14c9d0810c5355966fe9be33d65e3d7bde8

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b2389a1f16a73af0767f58bbcf61587cac5f00f23a6a1df54841061dc6d19f64
MD5 3857906573840368827fcae2459a758a
BLAKE2b-256 03064897f7f4290a0b7bac5eda17df24da72999003bfc9e48a0a99789ce2cd47

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b15067d940565acd8f3b513cba020b10ede86c35d284a7fd029ef0106d6c50ce
MD5 2ca1b8a02d971229fdddf1ade9a89660
BLAKE2b-256 a7c658fa86d4bd5c737bd2511faa8d5a860fcf6d5c178df15cbd3b8c1c514258

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0823183f814df55aed333d8742ec6cbe75ed65b8e0fd16b5e8825d3c177a3266
MD5 cfbef96cc9c421d78a8c86c2eebce0f3
BLAKE2b-256 b8696ae8e7fcb62ac08e2de6571004d40d87397b15bcf4f05ff88fa92794a5fa

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f7c29601892646322cc5e5f99138ccd85d0d5bea60732019e41fd92289dc69a4
MD5 1a4de8fbb511cb9474778203432522a8
BLAKE2b-256 e363a077557c869e9372ed893dc6b2563841c69f3166c5e9e8614dc12f67845c

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ebc30e23c840a8117181838cf5fdffcfd9d686a0ea6c4ea0c01a54100d5495ae
MD5 e885841f95cde6bf09010e50cdfeae3f
BLAKE2b-256 160e6c43437b1570e020bb06a8173e13bf44ac6e9cee387c298f00b820969473

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c493c16186168728a0a9f0ab2a8670b11f141c0f5c1f27d6d4240ea03ac0b959
MD5 be97edee93fa73107687058dcbfa705f
BLAKE2b-256 1ecf7a8e6020d200498d4e4a1f73a3a7af47ce95ae803109605589a6368642c5

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev11-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev11-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cedd0ee8bc1458c5b5517371d0d29fca5febb1df70182de4ba79ba390c69f96c
MD5 5f4bb22d051d73c8688b2b5dc4e9a24d
BLAKE2b-256 237e161b4151e05933695e5b113f7fa2d46fd39ce8543c19d3c165a0771d0b2a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page