Skip to main content

MessagePack (de)serializer.

Project description

=======================
MessagePack for Python
=======================

:author: INADA Naoki
:version: 0.4.1
:date: 2014-02-17

.. image:: https://secure.travis-ci.org/msgpack/msgpack-python.png
:target: https://travis-ci.org/#!/msgpack/msgpack-python

What's this
------------

`MessagePack <http://msgpack.org/>`_ is a fast, compact binary serialization format, suitable for
similar data to JSON. This package provides CPython bindings for reading and
writing MessagePack data.

Install
---------
You can use ``pip`` or ``easy_install`` to install msgpack::

$ easy_install msgpack-python
or
$ pip install msgpack-python

PyPy
^^^^^

msgpack-python provides pure python implementation.
PyPy can use this.

Windows
^^^^^^^

When you can't use binary distribution, you need to install Visual Studio
or Windows SDK on Windows. (NOTE: Visual C++ Express 2010 doesn't support
amd64. Windows SDK is recommanded way to build amd64 msgpack without any fee.)

Without extension, using pure python implementation on CPython runs slowly.

Notes
-----

Note for msgpack 2.0 support
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

msgpack 2.0 adds two types: *bin* and *ext*.

*raw* was bytes or string type like Python 2's ``str``.
To distinguish string and bytes, msgpack 2.0 adds *bin*.
It is non-string binary like Python 3's ``bytes``.

To use *bin* type for packing ``bytes``, pass ``use_bin_type=True`` to
packer argument.

>>> import msgpack
>>> packed = msgpack.packb([b'spam', u'egg'], use_bin_type=True)
>>> msgpack.unpackb(packed, encoding='utf-8')
['spam', u'egg']

You shoud use it carefully. When you use ``use_bin_type=True``, packed
binary can be unpacked by unpackers supporting msgpack-2.0.

To use *ext* type, pass ``msgpack.ExtType`` object to packer.

>>> import msgpack
>>> packed = msgpack.packb(msgpack.ExtType(42, b'xyzzy'))
>>> msgpack.unpackb(packed)
ExtType(code=42, data='xyzzy')

You can use it with ``default`` and ``ext_hook``. See below.

Note for msgpack 0.2.x users
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The msgpack 0.3 have some incompatible changes.

The default value of ``use_list`` keyword argument is ``True`` from 0.3.
You should pass the argument explicitly for backward compatibility.

`Unpacker.unpack()` and some unpack methods now raises `OutOfData`
instead of `StopIteration`.
`StopIteration` is used for iterator protocol only.


How to use
-----------

One-shot pack & unpack
^^^^^^^^^^^^^^^^^^^^^^

Use ``packb`` for packing and ``unpackb`` for unpacking.
msgpack provides ``dumps`` and ``loads`` as alias for compatibility with
``json`` and ``pickle``.

``pack`` and ``dump`` packs to file-like object.
``unpack`` and ``load`` unpacks from file-like object.

::

>>> import msgpack
>>> msgpack.packb([1, 2, 3])
'\x93\x01\x02\x03'
>>> msgpack.unpackb(_)
[1, 2, 3]

``unpack`` unpacks msgpack's array to Python's list, but can unpack to tuple::

>>> msgpack.unpackb(b'\x93\x01\x02\x03', use_list=False)
(1, 2, 3)

You should always pass the ``use_list`` keyword argument. See performance issues relating to use_list_ below.

Read the docstring for other options.


Streaming unpacking
^^^^^^^^^^^^^^^^^^^

``Unpacker`` is a "streaming unpacker". It unpacks multiple objects from one
stream (or from bytes provided through its ``feed`` method).

::

import msgpack
from io import BytesIO

buf = BytesIO()
for i in range(100):
buf.write(msgpack.packb(range(i)))

buf.seek(0)

unpacker = msgpack.Unpacker(buf)
for unpacked in unpacker:
print unpacked


Packing/unpacking of custom data type
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

It is also possible to pack/unpack custom data types. Here is an example for
``datetime.datetime``.

::

import datetime

import msgpack

useful_dict = {
"id": 1,
"created": datetime.datetime.now(),
}

def decode_datetime(obj):
if b'__datetime__' in obj:
obj = datetime.datetime.strptime(obj["as_str"], "%Y%m%dT%H:%M:%S.%f")
return obj

def encode_datetime(obj):
if isinstance(obj, datetime.datetime):
return {'__datetime__': True, 'as_str': obj.strftime("%Y%m%dT%H:%M:%S.%f")}
return obj


packed_dict = msgpack.packb(useful_dict, default=encode_datetime)
this_dict_again = msgpack.unpackb(packed_dict, object_hook=decode_datetime)

``Unpacker``'s ``object_hook`` callback receives a dict; the
``object_pairs_hook`` callback may instead be used to receive a list of
key-value pairs.

Extended types
^^^^^^^^^^^^^^^

It is also possible to pack/unpack custom data types using the msgpack 2.0 feature.

>>> import msgpack
>>> import array
>>> def default(obj):
... if isinstance(obj, array.array) and obj.typecode == 'd':
... return msgpack.ExtType(42, obj.tostring())
... raise TypeError("Unknown type: %r" % (obj,))
...
>>> def ext_hook(code, data):
... if code == 42:
... a = array.array('d')
... a.fromstring(data)
... return a
... return ExtType(code, data)
...
>>> data = array.array('d', [1.2, 3.4])
>>> packed = msgpack.packb(data, default=default)
>>> unpacked = msgpack.unpackb(packed, ext_hook=ext_hook)
>>> data == unpacked
True


Advanced unpacking control
^^^^^^^^^^^^^^^^^^^^^^^^^^

As an alternative to iteration, ``Unpacker`` objects provide ``unpack``,
``skip``, ``read_array_header`` and ``read_map_header`` methods. The former two
read an entire message from the stream, respectively deserialising and returning
the result, or ignoring it. The latter two methods return the number of elements
in the upcoming container, so that each element in an array, or key-value pair
in a map, can be unpacked or skipped individually.

Each of these methods may optionally write the packed data it reads to a
callback function:

::

from io import BytesIO

def distribute(unpacker, get_worker):
nelems = unpacker.read_map_header()
for i in range(nelems):
# Select a worker for the given key
key = unpacker.unpack()
worker = get_worker(key)

# Send the value as a packed message to worker
bytestream = BytesIO()
unpacker.skip(bytestream.write)
worker.send(bytestream.getvalue())

Note about performance
------------------------

GC
^^

CPython's GC starts when growing allocated object.
This means unpacking may cause useless GC.
You can use ``gc.disable()`` when unpacking large message.

`use_list` option
^^^^^^^^^^^^^^^^^^
List is the default sequence type of Python.
But tuple is lighter than list.
You can use ``use_list=False`` while unpacking when performance is important.

Python's dict can't use list as key and MessagePack allows array for key of mapping.
``use_list=False`` allows unpacking such message.
Another way to unpacking such object is using ``object_pairs_hook``.


Test
----
MessagePack uses `pytest` for testing.
Run test with following command:

$ py.test

..
vim: filetype=rst

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

msgpack-python-0.4.2.tar.gz (114.0 kB view details)

Uploaded Source

Built Distributions

msgpack_python-0.4.2-cp34-none-win_amd64.whl (61.5 kB view details)

Uploaded CPython 3.4 Windows x86-64

msgpack_python-0.4.2-cp34-none-win32.whl (57.9 kB view details)

Uploaded CPython 3.4 Windows x86

File details

Details for the file msgpack-python-0.4.2.tar.gz.

File metadata

File hashes

Hashes for msgpack-python-0.4.2.tar.gz
Algorithm Hash digest
SHA256 0476e8fdd79e5b648b349bd0edebf06e41271ee29421ef7adb12cdbe55dac2a9
MD5 e3a0fdfd864c72c958bb501d39b39caf
BLAKE2b-256 20ad2b9ad8e94ad0f5056d1e269f787acf83300de853e62499bb659c2e747672

See more details on using hashes here.

File details

Details for the file msgpack_python-0.4.2-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for msgpack_python-0.4.2-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 8c990694310eb22daf21bf5aa48fef0a683a2a71fc89eb5a55176ea6ba504289
MD5 dcb0ee896c2f1ea5c09b1af8b3bb8901
BLAKE2b-256 8757c5e98af46d92bdbccdc4c267a6cf5b533e0b084e26d15899f815d7980bcc

See more details on using hashes here.

File details

Details for the file msgpack_python-0.4.2-cp34-none-win32.whl.

File metadata

File hashes

Hashes for msgpack_python-0.4.2-cp34-none-win32.whl
Algorithm Hash digest
SHA256 3d9726983d84dd03cb71096b2b3b904b3b2a23c29495abb72b79f01fcf311f89
MD5 dda44ef5bd9dc0458fc3805507526e2b
BLAKE2b-256 9b8dec0c66d236bd32923db059d86e8e88cb3001f2fef4f6edb0784be4b1d422

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page