Skip to main content

mtdata is a tool to download datasets for machine translation

Project description

MTData

MTData tool automate the dataset collection and preparation for machine translation research. It provides CLI and python APIs, so it can be used as a standalone tool or embedded into python apps for preparing MT experiments.

This tool knows:

  • From where to download data sets: WMT tests and devs for [2014, 2015, ... 2020], Paracrawl, Europarl, News Commentary, WikiTitles, Tilde Model corpus ...
  • How to extract files : .tar, .tar.gz, .tgz, .zip, ...
  • How to parse .tmx, .sgm and such XMLs, or .tsv ... Checks if they have same number of segments.
  • Whether parallel data is in one .tsv file or two sgm files.
  • Whether data is compressed in gz, xz or none at all.
  • Whether the source-target is in the same order or is it swapped as target-source order.
  • How to map code to ISO language codes! Using ISO 639_3 that has space for 7000+ languages of our planet.
  • (And more of such tiny details over the time.)

MTData is here to:

  • Automate the MT training data creation by taking out human intervention. Inspired by SacreBLEU that takes out human intervention in evaluation stage.
  • A reusable tool instead of dozens of use-once shell scripts spread across multiple repos.

Limitations (as of now):

  • Only publicly available datasets that do not need login are supported. No LDC yet.
  • No tokenizers are integrated. (It should be fairly easy to get those integrated)

Installation

# from the source code on github 
git clone https://github.com/thammegowda/mtdata 
cd mtdata
pip install --editable .

# from pypi ; do not do this yet, since the code is evolving faster than releases
pip install mtdata  

Current Status:

These are the summary of datasets from various sources (Updated: May 10 2020). The list is incomplete and meant to see as start. Here I (/TG) have picked some commonly used datasets that I use for my work, you are welcome to add more.

Source # of datasets
Statmt 346
Paracrawl 30
Tilde 865
OPUS$1 53,351
JW300$2 46,340
GlobalVoices 2018Q4 1,677
Joshua Indian Corpus 60
UnitedNations$3 90
  • $1 - OPUS contains duplicate entries from other listed sources, but they are often older releases of corpus.
  • $2 - JW300 is also retrieved from OPUS, however handled differently due to the difference in the scale and internal format.
  • $3 - Only test sets are included

CLI Usage

  • After pip installation, the CLI can be called using mtdata command or python -m mtdata
  • There are two sub commands: list for listing the datasets, and get for getting them

mtdata list

Lists datasets that are known to this tool.

mtdata list -h
usage: mtdata list [-h] [-l L1-L2] [-n [NAME [NAME ...]]]
                   [-nn [NAME [NAME ...]]] [-f]

optional arguments:
  -h, --help            show this help message and exit
  -l L1-L2, --langs L1-L2
                        Language pairs; e.g.: deu-eng (default: None)
  -n [NAME [NAME ...]], --names [NAME [NAME ...]]
                        Name of dataset set; eg europarl_v9. (default: None)
  -nn [NAME [NAME ...]], --not-names [NAME [NAME ...]]
                        Exclude these names (default: None)
  -f, --full            Show Full Citation (default: False)
# List everything
mtdata list

# List a lang pair 
mtdata list -l deu-eng

# List a dataset by name(s)
mtdata list -n europarl_v9
mtdata list -n europarl_v9 news_commentary_v14

# list by both language pair and dataset name
mtdata list -l deu-eng -n europarl_v9 news_commentary_v14 newstest201{4,5,6,7,8,9}_deen

# get citation of a dataset (if available in index.py)
mtdata list -l deu-eng -n newstest2019_deen --full

mtdata get

This command downloads datasets specified by names for languages to a directory. You will have to make definite choice for --train and --test arguments

mtdata get -h
usage: mtdata get [-h] -l L1-L2 [-tr [NAME [NAME ...]]]
                  [-tt [NAME [NAME ...]]] -o OUT

optional arguments:
  -h, --help            show this help message and exit
  -l L1-L2, --langs L1-L2
                        Language pairs; e.g.: deu-eng (default: None)
  -tr [NAME [NAME ...]], --train [NAME [NAME ...]]
                        Names of datasets separated by space, to be used for *training*.
                          e.g. -tr news_commentary_v14 europarl_v9 .
                          All these datasets gets concatenated into one big file.
                           (default: None)
  -tt [NAME [NAME ...]], --test [NAME [NAME ...]]
                        Names of datasets separated by space, to be used for *testing*.
                          e.g. "-tt newstest2018_deen newstest2019_deen".
                        You may also use shell expansion if your shell supports it.
                          e.g. "-tt newstest201{8,9}_deen."  (default: None)
  -o OUT, --out OUT     Output directory name (default: None)

Example

See what datasets are available for deu-eng

$ mtdata list -l deu-eng  # see available datasets
    europarl_v9	deu-eng	http://www.statmt.org/europarl/v9/training/europarl-v9.deu-eng.tsv.gz
    news_commentary_v14	deu-eng	http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.deu-eng.tsv.gz
    wiki_titles_v1	deu-eng	http://data.statmt.org/wikititles/v1/wikititles-v1.deu-eng.tsv.gz
    wiki_titles_v2	deu-eng	http://data.statmt.org/wikititles/v2/wikititles-v2.deu-eng.tsv.gz
    newstest2014_deen	deu-eng	http://data.statmt.org/wmt20/translation-task/dev.tgz	dev/newstest2014-deen-src.de.sgm,dev/newstest2014-deen-ref.en.sgm
    newstest2015_ende	en-de	http://data.statmt.org/wmt20/translation-task/dev.tgz	dev/newstest2015-ende-src.en.sgm,dev/newstest2015-ende-ref.de.sgm
    newstest2015_deen	deu-eng	http://data.statmt.org/wmt20/translation-task/dev.tgz	dev/newstest2015-deen-src.de.sgm,dev/newstest2015-deen-ref.en.sgm
    ...[truncated]

Get these datasets and store under dir deu-eng

$ mtdata get --langs deu-eng --train europarl_v10 wmt13_commoncrawl news_commentary_v14 --test newstest201{4,5,6,7,8,9}_deen --out deu-eng
    # ...[truncated]   
    INFO:root:Train stats:
    {
      "total": 4565929,
      "parts": {
        "wmt13_commoncrawl": 2399123,
        "news_commentary_v14": 338285,
        "europarl_v10": 1828521
      }
    }
    INFO:root:Dataset is ready at deu-eng

To reproduce this dataset again in the future or by others, please refer to <out-dir>>/mtdata.signature.txt:

$ cat deu-eng/mtdata.signature.txt
mtdat get -l deu-eng -tr europarl_v10 wmt13_commoncrawl news_commentary_v14 -ts newstest2014_deen newstest2015_deen newstest2016_deen newstest2017_deen newstest2018_deen newstest2019_deen -o <out-dir>
mtdata version 0.1.1

See what the above command has accomplished:

$ find  deu-eng -type f | sort  | xargs wc -l
    3003 deu-eng/tests/newstest2014_deen.deu
    3003 deu-eng/tests/newstest2014_deen.eng
    2169 deu-eng/tests/newstest2015_deen.deu
    2169 deu-eng/tests/newstest2015_deen.eng
    2999 deu-eng/tests/newstest2016_deen.deu
    2999 deu-eng/tests/newstest2016_deen.eng
    3004 deu-eng/tests/newstest2017_deen.deu
    3004 deu-eng/tests/newstest2017_deen.eng
    2998 deu-eng/tests/newstest2018_deen.deu
    2998 deu-eng/tests/newstest2018_deen.eng
    2000 deu-eng/tests/newstest2019_deen.deu
    2000 deu-eng/tests/newstest2019_deen.eng
 1828521 deu-eng/train-parts/europarl_v10.deu
 1828521 deu-eng/train-parts/europarl_v10.eng
  338285 deu-eng/train-parts/news_commentary_v14.deu
  338285 deu-eng/train-parts/news_commentary_v14.eng
 2399123 deu-eng/train-parts/wmt13_commoncrawl.deu
 2399123 deu-eng/train-parts/wmt13_commoncrawl.eng
 4565929 deu-eng/train.deu
 4565929 deu-eng/train.eng

ISO 639 3

Internally all language codes are mapped to ISO-639 3 codes. The mapping can be inspected with python -m mtdata.iso

$ python -m mtdata.iso -h
usage: python -m mtdata.iso [-h] [langs [langs ...]]

ISO 639-3 lookup tool

positional arguments:
  langs       Language code or name that needs to be looked up. When no
              language code is given, all languages are listed.

optional arguments:
  -h, --help  show this help message and exit

# list all 7000+ languages and their 3 letter codes
$ python -m mtdata.iso 
...

# lookup codes for some languages
$ python -m mtdata.iso ka kn en de xx english german
Input   ISO639_3        Name
ka      kat     Georgian
kn      kan     Kannada
en      eng     English
de      deu     German
xx      -none-  -none-
english eng     English
german  deu     German

How to extend, modify, or contribute:

Please help grow the datasets by adding missing+new datasets to index module. Here is an example listing europarl-v9 corpus. Note: the language codes such as de en etc will be mapped to 3 letter ISO codes deu eng internally

from mtdata.index import INDEX as index, Entry
EUROPARL_v9 = 'http://www.statmt.org/europarl/v9/training/europarl-v9.%s-%s.tsv.gz'
for pair in ['de en', 'cs en', 'cs pl', 'es pt', 'fi en', 'lt en']:
    l1, l2 = pair.split()
    index.add_entry(Entry(langs=(l1, l2), name='europarl_v9', url=EUROPARL_v9 % (l1, l2)))

If a datset is inside an archive such as zip or tar

from mtdata.index import INDEX as index, Entry
wmt_sets = {
    'newstest2014': [('de', 'en'), ('cs', 'en'), ('fr', 'en'), ('ru', 'en'), ('hi', 'en')],
    'newsdev2015': [('fi', 'en'), ('en', 'fi')]
}
for set_name, pairs in wmt_sets.items():
    for l1, l2 in pairs:
        src = f'dev/{set_name}-{l1}{l2}-src.{l1}.sgm'
        ref = f'dev/{set_name}-{l1}{l2}-ref.{l2}.sgm'
        name = f'{set_name}_{l1}{l2}'
        index.add_entry(Entry((l1, l2), name=name, filename='wmt20dev.tgz', in_paths=[src, ref],
                             url='http://data.statmt.org/wmt20/translation-task/dev.tgz'))
# filename='wmt20dev.tgz' -- is manually set, because url has dev.gz that can be confusing
# in_paths=[src, ref]  -- listing two sgm files inside the tarball
# in_ext='sgm' will be auto detected fropm path. set in_ext='txt' to explicitly set format as plain text 

Refer to paracrawl, tilde, or statmt for examples.

If citation is available for a dataset, please incl.deu

cite = r"""bib tex here""
Entry(... cite=cite)

For adding a custom parser, or file handler look into parser.read_segs() and cache for dealing with a new archive/file type that is not already supported.

Developers:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mtdata-0.2.1.tar.gz (20.1 kB view details)

Uploaded Source

Built Distribution

mtdata-0.2.1-py3-none-any.whl (26.5 kB view details)

Uploaded Python 3

File details

Details for the file mtdata-0.2.1.tar.gz.

File metadata

  • Download URL: mtdata-0.2.1.tar.gz
  • Upload date:
  • Size: 20.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for mtdata-0.2.1.tar.gz
Algorithm Hash digest
SHA256 59234f421dba396732839fc598e1135786e96d60eb898cef390613521749c865
MD5 947279dc4e6719199a8fd885f6471ed9
BLAKE2b-256 45abc954e6c130a298f545fc63d021542b0bebfc34cde2676cf0f371a26519d7

See more details on using hashes here.

File details

Details for the file mtdata-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: mtdata-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 26.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for mtdata-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e21124954f1601f36e27f2e2d9edc1cadf465d11b3bbf0118c58d2635cecf372
MD5 4457fa51958da851eb5f5cd6bc5c2bf7
BLAKE2b-256 36a791293086cf5cf4a4d0b6a526e3b356bb1a1224583357a134e4d6f99a9313

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page