Skip to main content

Create aggregate bioinformatics analysis reports across many samples and tools

Project description

  MultiQC MultiQC  

Aggregate bioinformatics results across many samples into a single report

Find documentation and example reports at http://multiqc.info

PyPI Version Bioconda Version DOI


MultiQC is a tool to create a single report with interactive plots for multiple bioinformatics analyses across many samples.

Reports are generated by scanning given directories for recognised log files. These are parsed and a single HTML report is generated summarising the statistics for all logs found. MultiQC reports can describe multiple analysis steps and large numbers of samples within a single plot, and multiple analysis tools making it ideal for routine fast quality control.

A very large number of Bioinformatics tools are supported by MultiQC. Please see the MultiQC website for a complete list. MultiQC can also easily parse data from custom scripts, if correctly formatted / configured - a feature called Custom Content.

More modules are being written all the time. Please suggest any ideas as a new issue (please include example log files).

Installation

You can install MultiQC from PyPI using pip as follows:

pip install multiqc

Alternatively, you can install using Conda from Bioconda (set up your channels first):

conda install multiqc

If you would like the development version from GitHub instead, you can install it with pip:

pip install --upgrade --force-reinstall git+https://github.com/MultiQC/MultiQC.git

MultiQC is also available via Docker and Singularity images, Galaxy wrappers, and many more software distribution systems. See the documentation for details.

Usage

Once installed, you can use MultiQC by navigating to your analysis directory (or a parent directory) and running the tool:

multiqc .

That's it! MultiQC will scan the specified directory (. is the current dir) and produce a report detailing whatever it finds.

cd test_data/data/modules/fastqc/v0.10.1 && multiqc .

The report is created in multiqc_report.html by default. Tab-delimited data files are also created in multiqc_data/, containing extra information. These can be easily inspected using Excel (use --data-format to get yaml or json instead).

For more detailed instructions, run multiqc -h or see the documentation.

Citation

Please consider citing MultiQC if you use it in your analysis.

MultiQC: Summarize analysis results for multiple tools and samples in a single report.
Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
Bioinformatics (2016)
doi: 10.1093/bioinformatics/btw354
PMID: 27312411

@article{doi:10.1093/bioinformatics/btw354,
 author = {Ewels, Philip and Magnusson, Måns and Lundin, Sverker and Käller, Max},
 title = {MultiQC: summarize analysis results for multiple tools and samples in a single report},
 journal = {Bioinformatics},
 volume = {32},
 number = {19},
 pages = {3047},
 year = {2016},
 doi = {10.1093/bioinformatics/btw354},
 URL = { + http://dx.doi.org/10.1093/bioinformatics/btw354},
 eprint = {/oup/backfile/Content_public/Journal/bioinformatics/32/19/10.1093_bioinformatics_btw354/3/btw354.pdf}
}

Contributions & Support

Contributions and suggestions for new features are welcome, as are bug reports! Please create a new issue for any of these, including example reports where possible. Pull-requests for fixes and additions are very welcome. Please see the contributing notes for more information about how the process works.

MultiQC has extensive documentation describing how to write new modules, plugins and templates.

If in doubt, feel free to get in touch with the author directly: @ewels (phil.ewels@seqera.io)

Contributors

MultiQC is developed and maintained by Phil Ewels (@ewels) at Seqera Labs. It was originally written at the National Genomics Infrastructure, part of SciLifeLab in Sweden.

A huge thank you to all code contributors - there are a lot of you! See the Contributors Graph for details.

MultiQC is released under the GPL v3 or later licence.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multiqc-1.22.tar.gz (4.2 MB view details)

Uploaded Source

Built Distribution

multiqc-1.22-py3-none-any.whl (4.5 MB view details)

Uploaded Python 3

File details

Details for the file multiqc-1.22.tar.gz.

File metadata

  • Download URL: multiqc-1.22.tar.gz
  • Upload date:
  • Size: 4.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for multiqc-1.22.tar.gz
Algorithm Hash digest
SHA256 e4d26270de8b06d15baf163d27707af229f785a0b941ad6346c2dfe844a39c53
MD5 d6578d22f6eaf4f6d0f3dd1da625a2f6
BLAKE2b-256 b460ed18675ca283a2c7469308399789240f31f2f6f340ed192f264993361a83

See more details on using hashes here.

File details

Details for the file multiqc-1.22-py3-none-any.whl.

File metadata

  • Download URL: multiqc-1.22-py3-none-any.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for multiqc-1.22-py3-none-any.whl
Algorithm Hash digest
SHA256 501f4d60ef4dcf31f29b77629fffac7cb33f19ce1d8eef0f9e1ba4ebce84b6ab
MD5 fa7966b99be34e0706584ec84b0b69f7
BLAKE2b-256 81bc5780dd13065676e4b1befca4345e18734a71ebc4f11db0cc1b4b3f325c36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page