Skip to main content

Create aggregate bioinformatics analysis reports across many samples and tools

Project description

MultiQC

Aggregate bioinformatics results across many samples into a single report

Find documentation and example reports at http://multiqc.info

PyPI Version Bioconda Version DOI


MultiQC is a tool to create a single report with interactive plots for multiple bioinformatics analyses across many samples.

Reports are generated by scanning given directories for recognised log files. These are parsed and a single HTML report is generated summarising the statistics for all logs found. MultiQC reports can describe multiple analysis steps and large numbers of samples within a single plot, and multiple analysis tools making it ideal for routine fast quality control.

A very large number of Bioinformatics tools are supported by MultiQC. Please see the MultiQC website for a complete list. MultiQC can also easily parse data from custom scripts, if correctly formatted / configured - a feature called Custom Content.

More modules are being written all the time. Please suggest any ideas as a new issue (please include example log files).

Installation

You can install MultiQC from PyPI using pip as follows:

pip install multiqc

Alternatively, you can install using Conda from Bioconda (set up your channels first):

conda install multiqc

If you would like the development version from GitHub instead, you can install it with pip:

pip install --upgrade --force-reinstall git+https://github.com/MultiQC/MultiQC.git

MultiQC is also available via Docker and Singularity images, Galaxy wrappers, and many more software distribution systems. See the documentation for details.

Usage

Once installed, you can use MultiQC by navigating to your analysis directory (or a parent directory) and running the tool:

multiqc .

That's it! MultiQC will scan the specified directory (. is the current dir) and produce a report detailing whatever it finds.

cd test-data/data/modules/fastqc/v0.10.1 && multiqc .

The report is created in multiqc_report.html by default. Tab-delimited data files are also created in multiqc_data/, containing extra information. These can be easily inspected using Excel (use --data-format to get yaml or json instead).

For more detailed instructions, run multiqc -h or see the documentation.

Citation

Please consider citing MultiQC if you use it in your analysis.

MultiQC: Summarize analysis results for multiple tools and samples in a single report.
Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
Bioinformatics (2016)
doi: 10.1093/bioinformatics/btw354
PMID: 27312411

@article{doi:10.1093/bioinformatics/btw354,
 author = {Ewels, Philip and Magnusson, Måns and Lundin, Sverker and Käller, Max},
 title = {MultiQC: summarize analysis results for multiple tools and samples in a single report},
 journal = {Bioinformatics},
 volume = {32},
 number = {19},
 pages = {3047},
 year = {2016},
 doi = {10.1093/bioinformatics/btw354},
 URL = { + http://dx.doi.org/10.1093/bioinformatics/btw354},
 eprint = {/oup/backfile/Content_public/Journal/bioinformatics/32/19/10.1093_bioinformatics_btw354/3/btw354.pdf}
}

Contributions & Support

Contributions and suggestions for new features are welcome, as are bug reports! Please create a new issue for any of these, including example reports where possible. Pull-requests for fixes and additions are very welcome. Please see the contributing notes for more information about how the process works.

MultiQC has extensive documentation describing how to write new modules, plugins and templates.

If in doubt, feel free to get in touch with the author directly: @ewels (phil.ewels@seqera.io)

Contributors

MultiQC is developed and maintained by Phil Ewels (@ewels) at Seqera Labs. It was originally written at the National Genomics Infrastructure, part of SciLifeLab in Sweden.

A huge thank you to all code contributors - there are a lot of you! See the Contributors Graph for details.

MultiQC is released under the GPL v3 or later licence.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multiqc-1.24.tar.gz (4.3 MB view details)

Uploaded Source

Built Distribution

multiqc-1.24-py3-none-any.whl (4.6 MB view details)

Uploaded Python 3

File details

Details for the file multiqc-1.24.tar.gz.

File metadata

  • Download URL: multiqc-1.24.tar.gz
  • Upload date:
  • Size: 4.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for multiqc-1.24.tar.gz
Algorithm Hash digest
SHA256 e9548958823e74ebeaad80630db745db9566510e4c9f145793eccb7c839d319c
MD5 3ef5f10a887669cf7e873fa4d6d2abfc
BLAKE2b-256 1103990e857673088ee1f15f846a51a3eeca2fc72d50c9ccde44c0469e9a8ef0

See more details on using hashes here.

File details

Details for the file multiqc-1.24-py3-none-any.whl.

File metadata

  • Download URL: multiqc-1.24-py3-none-any.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for multiqc-1.24-py3-none-any.whl
Algorithm Hash digest
SHA256 991755ce91462b20aaa72fb78daa8b477b9c920ac099d434cef1b96394d099cb
MD5 3e0f3119e67f8414b63b9a9f0d5af65a
BLAKE2b-256 7047ba71ed113c96221ce33113baaeac9d75a21e1dd0b5c76eb378ab6a61f87b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page