Skip to main content

multiscale-spatial-image

Project description

multiscale-spatial-image

Test Notebook tests image image DOI

Generate a multiscale, chunked, multi-dimensional spatial image data structure that can serialized to OME-NGFF.

Each scale is a scientific Python Xarray spatial-image Dataset, organized into nodes of an Xarray Datatree.

Installation

pip install multiscale_spatial_image

Usage

import numpy as np
from spatial_image import to_spatial_image
from multiscale_spatial_image import to_multiscale
import zarr

# Image pixels
array = np.random.randint(0, 256, size=(128,128), dtype=np.uint8)

image = to_spatial_image(array)
print(image)

An Xarray spatial-image DataArray. Spatial metadata can also be passed during construction.

<xarray.SpatialImage 'image' (y: 128, x: 128)>
array([[114,  47, 215, ..., 245,  14, 175],
       [ 94, 186, 112, ...,  42,  96,  30],
       [133, 170, 193, ..., 176,  47,   8],
       ...,
       [202, 218, 237, ...,  19, 108, 135],
       [ 99,  94, 207, ..., 233,  83, 112],
       [157, 110, 186, ..., 142, 153,  42]], dtype=uint8)
Coordinates:
  * y        (y) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
  * x        (x) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
# Create multiscale pyramid, downscaling by a factor of 2, then 4
multiscale = to_multiscale(image, [2, 4])
print(multiscale)

A chunked Dask Array MultiscaleSpatialImage Xarray Datatree.

DataTree('multiscales', parent=None)
├── DataTree('scale0')
│   Dimensions:  (y: 128, x: 128)
│   Coordinates:
│     * y        (y) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
│     * x        (x) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
│   Data variables:
│       image    (y, x) uint8 dask.array<chunksize=(128, 128), meta=np.ndarray>
├── DataTree('scale1')
│   Dimensions:  (y: 64, x: 64)
│   Coordinates:
│     * y        (y) float64 0.5 2.5 4.5 6.5 8.5 ... 118.5 120.5 122.5 124.5 126.5
│     * x        (x) float64 0.5 2.5 4.5 6.5 8.5 ... 118.5 120.5 122.5 124.5 126.5
│   Data variables:
│       image    (y, x) uint8 dask.array<chunksize=(64, 64), meta=np.ndarray>
└── DataTree('scale2')
    Dimensions:  (y: 16, x: 16)
    Coordinates:
      * y        (y) float64 3.5 11.5 19.5 27.5 35.5 ... 91.5 99.5 107.5 115.5 123.5
      * x        (x) float64 3.5 11.5 19.5 27.5 35.5 ... 91.5 99.5 107.5 115.5 123.5
    Data variables:
        image    (y, x) uint8 dask.array<chunksize=(16, 16), meta=np.ndarray>

Store as an Open Microscopy Environment-Next Generation File Format (OME-NGFF) / netCDF Zarr store.

It is highly recommended to use dimension_separator='/' in the construction of the Zarr stores.

store = zarr.storage.DirectoryStore('multiscale.zarr', dimension_separator='/')
multiscale.to_zarr(store)

Note: The API is under development, and it may change until 1.0.0 is released. We mean it :-).

Examples

Development

Contributions are welcome and appreciated.

To run the test suite:

git clone https://github.com/spatial-image/multiscale-spatial-image
cd multiscale-spatial-image
pip install -e ".[test]"
cid=$(grep 'IPFS_CID =' test/test_multiscale_spatial_image.py | cut -d ' ' -f 3 | tr -d '"')
# Needs ipfs, e.g. https://docs.ipfs.io/install/ipfs-desktop/
ipfs get -o ./test/data -- $cid
pytest
# Notebook tests
pytest --nbmake --nbmake-timeout=3000 examples/*ipynb

To add new or update testing data, such as a new baseline for this block:

dataset_name = "cthead1"
image = input_images[dataset_name]
baseline_name = "2_4/XARRAY_COARSEN"
multiscale = to_multiscale(image, [2, 4], method=Methods.XARRAY_COARSEN)
verify_against_baseline(dataset_name, baseline_name, multiscale)

Serialize the result:

dataset_name = "cthead1"
image = input_images[dataset_name]
baseline_name = "2_4/XARRAY_COARSEN"
multiscale = to_multiscale(image, [2, 4], method=Methods.XARRAY_COARSEN)

store = DirectoryStore(
    DATA_PATH / f"baseline/{dataset_name}/{baseline_name}", dimension_separator="/"
)
multiscale.to_zarr(store, mode="w")

verify_against_baseline(dataset_name, baseline_name, multiscale)

Run the tests to generate the output.

Once the new test data is present locally, upload the result to IPFS:

npm install -g @web3-storage/w3
# Get an upload token from https://web3.storage
w3 token
w3 put ./test/data --no-wrap --name multiscale-spatial-image-topic-name --hidden

The update the resulting root CID in the IPFS_CID variable.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multiscale_spatial_image-0.9.0.tar.gz (759.2 kB view details)

Uploaded Source

Built Distribution

multiscale_spatial_image-0.9.0-py2.py3-none-any.whl (15.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file multiscale_spatial_image-0.9.0.tar.gz.

File metadata

File hashes

Hashes for multiscale_spatial_image-0.9.0.tar.gz
Algorithm Hash digest
SHA256 7767db4a670da9df580dd3e9968c8baae550e213cdb88adbc162834fb7768f82
MD5 06a3b2c1f48a07b2b212fd61ff131af2
BLAKE2b-256 02f482402493ce10453fdc86a23be46da4b6d13fb16fb1cdfc84160477b1ec7f

See more details on using hashes here.

File details

Details for the file multiscale_spatial_image-0.9.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for multiscale_spatial_image-0.9.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 555a580bd39d247aa017ea32be9f40bca5c63eab8252e2aa449e4662dfe8468a
MD5 4e11d671e633f259d9cb2beda5e4f2c4
BLAKE2b-256 68244db4dc262b73b41774eef081719e1076d144afbbfa35788eb639513b65d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page