Skip to main content

Non-blocking Python methods using decorators

Project description

MultiTasking: Non-blocking Python methods using decorators

Python version Travis-CI build status PyPi version PyPi status Star this repo Follow me on twitter

MultiTasking is a tiny Python library lets you convert your Python methods into asynchronous, non-blocking methods simply by using a decorator.

Example

# example.py
import multitasking
import time
import random
import signal

# kill all tasks on ctrl-c
signal.signal(signal.SIGINT, multitasking.killall)

# or, wait for task to finish on ctrl-c:
# signal.signal(signal.SIGINT, multitasking.wait_for_tasks)

@multitasking.task # <== this is all it takes :-)
def hello(count):
    sleep = random.randint(1,10)/2
    print("Hello %s (sleeping for %ss)" % (count, sleep))
    time.sleep(sleep)
    print("Goodbye %s (after for %ss)" % (count, sleep))

if __name__ == "__main__":
    for i in range(0, 10):
        hello(i+1)

The output would look something like this:

$ python example.py

Hello 1 (sleeping for 0.5s)
Hello 2 (sleeping for 1.0s)
Hello 3 (sleeping for 5.0s)
Hello 4 (sleeping for 0.5s)
Hello 5 (sleeping for 2.5s)
Hello 6 (sleeping for 3.0s)
Hello 7 (sleeping for 0.5s)
Hello 8 (sleeping for 4.0s)
Hello 9 (sleeping for 3.0s)
Hello 10 (sleeping for 1.0s)
Goodbye 1 (after for 0.5s)
Goodbye 4 (after for 0.5s)
Goodbye 7 (after for 0.5s)
Goodbye 2 (after for 1.0s)
Goodbye 10 (after for 1.0s)
Goodbye 5 (after for 2.5s)
Goodbye 6 (after for 3.0s)
Goodbye 9 (after for 3.0s)
Goodbye 8 (after for 4.0s)
Goodbye 3 (after for 5.0s)

Settings

The default maximum threads is equal to the # of CPU Cores. This is just a rule of thumb! The Thread module isn’t actually using more than one core at a time.

You can change the default maximum number of threads using:

import multitasking
multitasking.set_max_threads(10)

…or, if you want to set the maximum number of threads based on the number of CPU Cores, you can:

import multitasking
multitasking.set_max_threads(multitasking.config["CPU_CORES"] * 5)

For applications that doesn’t require access to shared resources, you can set MultiTasking to use multiprocessing.Process() instead of the threading.Thread(), thus avoiding some of the GIL constraints.

import multitasking
multitasking.set_engine("process") # "process" or "thread"

Installation

Install multitasking using pip:

$ pip install multitasking --upgrade --no-cache-dir

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multitasking-0.0.6.tar.gz (6.9 kB view details)

Uploaded Source

File details

Details for the file multitasking-0.0.6.tar.gz.

File metadata

File hashes

Hashes for multitasking-0.0.6.tar.gz
Algorithm Hash digest
SHA256 78fe6b0765cee000cdbf80b20378274da71c83ba3951a1c08e68e67f9ce88752
MD5 70f8c07192eab82869aefe12c4a068ab
BLAKE2b-256 65d5741be193d8fd300ea87abc4056b9b86aa17ce2d9e6d954ee2bca73f8bad0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page