Skip to main content

napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification.

Project description

napkinXC Build Status

napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification. It allows to train a classifier for very large datasets in few lines of code with minimal resources.

Right now, napkinXC implements the following features both in Python and C++:

  • Probabilistic Label Trees (PLT) and Online Probabilistic Label Trees (OPLT),
  • Hierarchical softmax (HSM),
  • Binary Relevance (BR),
  • One Versus Rest (OVR),
  • fast online prediction of top-k labels or labels above the given threshold,
  • hierarchical k-means clustering for tree building and other tree building methods,
  • support for predefined hierarchies,
  • LIBLINEAR, SGD, and AdaGrad solvers for base classifiers,
  • efficient ensembles tree-based model,
  • helpers to download and load data from XML Repository,
  • helpers to measure performance.

Please note that this library is still under development and also serves as a base for experiments. Some of the experimental features may not be documented.

The napkinXC is distributed under MIT license. All contributions to the project are welcome!

Roadmap

Coming soon:

  • OPLT available in Python
  • Possibility to use any type of binary classifier from Python
  • Improved dataset loading from Python
  • More datasets from XML Repository

Python quick start

Python version of napkinXC can be easly installed from PyPy repository:

pip install napkinxc

Minimal example of usage:

from napkinxc.models import PLT
from napkinxc.measures import precision_at_k
from napkinxc.datasets import load_dataset

X_train, Y_train = load_dataset("eurlex-4k", "train")
X_test, Y_test = load_dataset("eurlex-4k", "test")
plt = PLT("eurlex-model")
plt.fit(X_train, Y_train)
Y_pred = plt.predict(X_test, top_k=1)
print(precision_at_k(Y_test, Y_pred, k=1))

More examples can be found under python/examples directory.

Building executable

napkinXC can be also build as executable using:

cmake .
make -j

Command line options

Usage: nxc <command> <args>

Commands:
    train                   Train model on given input data
    test                    Test model on given input data
    predict                 Predict for given data
    ofo                     Use online f-measure optimalization
    version                 Print napkinXC version
    help                    Print help

Args:
    General:
    -i, --input             Input dataset
    -o, --output            Output (model) dir
    -m, --model             Model type (default = plt):
                            Models: ovr, br, hsm, plt, oplt, ubop, ubopHsm, brMips, ubopMips
    --ensemble              Number of models in ensemble (default = 1)
    -d, --dataFormat        Type of data format (default = libsvm),
                            Supported data formats: libsvm
    -t, --threads           Number of threads to use (default = 0)
                            Note: -1 to use #cpus - 1, 0 to use #cpus
    --header                Input contains header (default = 1)
                            Header format for libsvm: #lines #features #labels
    --hash                  Size of features space (default = 0)
                            Note: 0 to disable hashing
    --featuresThreshold     Prune features below given threshold (default = 0.0)
    --seed                  Seed (default = system time)
    --verbose               Verbose level (default = 2)

    Base classifiers:
    --optimizer             Optimizer used for training binary classifiers (default = libliner)
                            Optimizers: liblinear, sgd, adagrad, fobos
    --bias                  Value of the bias features (default = 1)
    --inbalanceLabelsWeighting     Increase the weight of minority labels in base classifiers (default = 1)
    --weightsThreshold      Threshold value for pruning models weights (default = 0.1)

    LIBLINEAR:              (more aobut LIBLINEAR: https://github.com/cjlin1/liblinear)
    -s, --solver            LIBLINEAR solver (default for log loss = L2R_LR_DUAL, for l2 loss = L2R_L2LOSS_SVC_DUAL)
                            Supported solvers: L2R_LR_DUAL, L2R_LR, L1R_LR,
                                               L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, L1R_L2LOSS_SVC
    -c, --liblinearC        LIBLINEAR cost co-efficient, inverse of regularization strength, must be a positive float,
                            smaller values specify stronger regularization (default = 10.0)
    --eps, --liblinearEps   LIBLINEAR tolerance of termination criterion (default = 0.1)

    SGD/AdaGrad:
    -l, --lr, --eta         Step size (learning rate) for online optimizers (default = 1.0)
    --epochs                Number of training epochs for online optimizers (default = 1)
    --adagradEps            Defines starting step size for AdaGrad (default = 0.001)

    Tree:
    -a, --arity             Arity of tree nodes (default = 2)
    --maxLeaves             Maximum degree of pre-leaf nodes. (default = 100)
    --tree                  File with tree structure
    --treeType              Type of a tree to build if file with structure is not provided
                            tree types: hierarchicalKmeans, huffman, completeKaryInOrder, completeKaryRandom,
                                        balancedInOrder, balancedRandom, onlineComplete

    K-Means tree:
    --kmeansEps             Tolerance of termination criterion of the k-means clustering 
                            used in hierarchical k-means tree building procedure (default = 0.001)
    --kmeansBalanced        Use balanced K-Means clustering (default = 1)

    Prediction:
    --topK                  Predict top-k labels (default = 5)
    --threshold             Predict labels with probability above the threshold, defaults to 0
    --setUtility            Type of set-utility function for prediction using ubop, rbop, ubopHsm, ubopMips models.
                            Set-utility functions: uP, uF1, uAlfa, uAlfaBeta, uDeltaGamma
                            See: https://arxiv.org/abs/1906.08129

    Set-Utility:
    --alfa
    --beta
    --delta
    --gamma

    Test:
    --measures              Evaluate test using set of measures (default = "p@1,r@1,c@1,p@3,r@3,c@3,p@5,r@5,c@5")
                            Measures: acc (accuracy), p (precision), r (recall), c (coverage), hl (hamming loos)
                                      p@k (precision at k), r@k (recall at k), c@k (coverage at k), s (prediction size)

References and acknowledgments

This library implements methods from following papers:

Another implementation of PLT model is available in extremeText library, that implements approach described in this NeurIPS paper.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

napkinxc-0.4.0.tar.gz (143.0 kB view details)

Uploaded Source

File details

Details for the file napkinxc-0.4.0.tar.gz.

File metadata

  • Download URL: napkinxc-0.4.0.tar.gz
  • Upload date:
  • Size: 143.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.5

File hashes

Hashes for napkinxc-0.4.0.tar.gz
Algorithm Hash digest
SHA256 81a1628b5f70abe779602c541ff27846fa756ee65e24c99f2ef72d85b9f4654f
MD5 04fe11ec0721c53c295abedb391b5bc7
BLAKE2b-256 052d85dd6d6e14d6e3f32cf0e887a6ddd79f35cae0dc4e71f6c5839a7c79c42d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page