Skip to main content

Extremely lightweight compatibility layer between pandas, Polars, cuDF, and Modin

Project description

Narwhals

narwhals_small

Extremely lightweight compatibility layer between Polars, pandas, cuDF, and Modin.

Seamlessly support all four, without depending on any of them!

  • Just use a subset of the Polars API, no need to learn anything new
  • No dependencies (not even Polars), keep your library lightweight
  • ✅ Separate Lazy and Eager APIs
  • ✅ Use Polars Expressions

Note: this is work-in-progress, and a bit of an experiment, don't take it too seriously.

Installation

pip install narwhals

Or just vendor it, it's only a bunch of pure-Python files.

Usage

There are three steps to writing dataframe-agnostic code using Narwhals:

  1. use narwhals.to_polars_api to wrap a pandas, Polars, cuDF, or Modin dataframe in the Polars API

  2. use the subset of the Polars API defined in https://github.com/MarcoGorelli/narwhals/blob/main/narwhals/spec/__init__.py.

  3. use DataFrame.to_native to return an object to the user in their original dataframe flavour. For example:

    • if you started with pandas, you'll get pandas back
    • if you started with Polars, you'll get Polars back
    • if you started with Modin, you'll get Modin back
    • if you started with cuDF, you'll get cuDF back (and computation will happen natively on the GPU!)

Example

Here's an example of a dataframe agnostic function:

from typing import TypeVar
import pandas as pd
import polars as pl

from narwhals import translate_frame

AnyDataFrame = TypeVar("AnyDataFrame")


def my_agnostic_function(
    suppliers_native: AnyDataFrame,
    parts_native: AnyDataFrame,
) -> AnyDataFrame:
    suppliers, pl = translate_frame(suppliers_native)
    parts, _ = translate_frame(parts_native)
    result = (
        suppliers.join(parts, left_on="city", right_on="city")
        .filter(
            pl.col("color").is_in(["Red", "Green"]),
            pl.col("weight") > 14,
        )
        .group_by("s", "p")
        .agg(
            weight_mean=pl.col("weight").mean(),
            weight_max=pl.col("weight").max(),
        )
    )
    return result.to_native()

You can pass in a pandas, Polars, cuDF, or Modin dataframe, the output will be the same! Let's try it out:

suppliers = {
    "s": ["S1", "S2", "S3", "S4", "S5"],
    "sname": ["Smith", "Jones", "Blake", "Clark", "Adams"],
    "status": [20, 10, 30, 20, 30],
    "city": ["London", "Paris", "Paris", "London", "Athens"],
}
parts = {
    "p": ["P1", "P2", "P3", "P4", "P5", "P6"],
    "pname": ["Nut", "Bolt", "Screw", "Screw", "Cam", "Cog"],
    "color": ["Red", "Green", "Blue", "Red", "Blue", "Red"],
    "weight": [12.0, 17.0, 17.0, 14.0, 12.0, 19.0],
    "city": ["London", "Paris", "Oslo", "London", "Paris", "London"],
}

print("pandas output:")
print(
    my_agnostic_function(
        pd.DataFrame(suppliers),
        pd.DataFrame(parts),
    )
)
print("\nPolars output:")
print(
    my_agnostic_function(
        pl.DataFrame(suppliers),
        pl.DataFrame(parts),
    )
)
print("\nPolars lazy output:")
print(
    my_agnostic_function(
        pl.LazyFrame(suppliers),
        pl.LazyFrame(parts),
    ).collect()
)
pandas output:
    s   p  weight_mean
0  S1  P6         19.0
1  S2  P2         17.0
2  S3  P2         17.0
3  S4  P6         19.0

Polars output:
shape: (4, 3)
┌─────┬─────┬─────────────┐
│ s   ┆ p   ┆ weight_mean │
│ --- ┆ --- ┆ ---         │
│ str ┆ str ┆ f64         │
╞═════╪═════╪═════════════╡
│ S1  ┆ P6  ┆ 19.0        │
│ S3  ┆ P2  ┆ 17.0        │
│ S4  ┆ P6  ┆ 19.0        │
│ S2  ┆ P2  ┆ 17.0        │
└─────┴─────┴─────────────┘

Polars lazy output:
shape: (4, 3)
┌─────┬─────┬─────────────┐
│ s   ┆ p   ┆ weight_mean │
│ --- ┆ --- ┆ ---         │
│ str ┆ str ┆ f64         │
╞═════╪═════╪═════════════╡
│ S1  ┆ P6  ┆ 19.0        │
│ S3  ┆ P2  ┆ 17.0        │
│ S4  ┆ P6  ┆ 19.0        │
│ S2  ┆ P2  ┆ 17.0        │
└─────┴─────┴─────────────┘

Magic! 🪄

Scope

  • Do you maintain a dataframe-consuming library?
  • Is there a Polars function which you'd like Narwhals to have, which would make your job easier?

If, I'd love to hear from you!

Note: this is not a "Dataframe Standard" project. It just translates a subset of the Polars API to pandas-like libraries.

Why "Narwhals"?

Because they are so awesome.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

narwhals-0.2.0.tar.gz (130.5 kB view details)

Uploaded Source

Built Distribution

narwhals-0.2.0-py3-none-any.whl (24.2 kB view details)

Uploaded Python 3

File details

Details for the file narwhals-0.2.0.tar.gz.

File metadata

  • Download URL: narwhals-0.2.0.tar.gz
  • Upload date:
  • Size: 130.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for narwhals-0.2.0.tar.gz
Algorithm Hash digest
SHA256 22273a68b1857a10a5182aa2eaf750e8b15f58363b8280535cd1930b24cf3084
MD5 561062b8dfa25e15f594dbbe6ebd05df
BLAKE2b-256 8355bee463b242c368ce8ca145e3886619abc0145415123ee452282f02793c41

See more details on using hashes here.

File details

Details for the file narwhals-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: narwhals-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 24.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for narwhals-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c2660db3af875fd16f27e72e72aee4b6f285124e2366c2f5e618fb5e29ca5112
MD5 db9c565d0a6cd6337ce577c98020162f
BLAKE2b-256 f7c2480b98a20817de21a076add202b420382a2d18f0f218b1864b3cce3befd9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page