Skip to main content

Extremely lightweight compatibility layer between pandas, Polars, cuDF, and Modin

Project description

Narwhals

narwhals_small

Extremely lightweight compatibility layer between Polars, pandas, and more.

Seamlessly support both, without depending on either!

  • Just use a subset of the Polars API, no need to learn anything new
  • No dependencies (not even Polars), keep your library lightweight
  • ✅ Separate lazy and eager APIs
  • ✅ Use Polars Expressions

Note: this is work-in-progress, and a bit of an experiment, don't take it too seriously.

Installation

pip install narwhals

Or just vendor it, it's only a bunch of pure-Python files.

Usage

There are three steps to writing dataframe-agnostic code using Narwhals:

  1. use narwhals.LazyFrame or narwhals.DataFrame to wrap a pandas or Polars DataFrame/LazyFrame in a Narwhals class

  2. use the subset of the Polars API supported by Narwhals. Just like in Polars, some methods (e.g. to_numpy) are only available for DataFrame, not LazyFrame

  3. use narwhals.to_native to return an object to the user in its original dataframe flavour. For example:

    • if you started with pandas, you'll get pandas back
    • if you started with Polars, you'll get Polars back
    • if you started with Polars, you'll get Polars back

Example

Here's an example of a dataframe agnostic function:

from typing import Any
import pandas as pd
import polars as pl

import narwhals as nw


def my_agnostic_function(
    suppliers_native,
    parts_native,
):
    suppliers = nw.LazyFrame(suppliers_native)
    parts = nw.LazyFrame(parts_native)

    result = (
        suppliers.join(parts, left_on="city", right_on="city")
        .filter(nw.col("weight") > 10)
        .group_by("s")
        .agg(
            weight_mean=nw.col("weight").mean(),
            weight_max=nw.col("weight").max(),
        )
    )
    return nw.to_native(result)

You can pass in a pandas or Polars dataframe, the output will be the same! Let's try it out:

suppliers = {
    "s": ["S1", "S2", "S3", "S4", "S5"],
    "sname": ["Smith", "Jones", "Blake", "Clark", "Adams"],
    "status": [20, 10, 30, 20, 30],
    "city": ["London", "Paris", "Paris", "London", "Athens"],
}
parts = {
    "p": ["P1", "P2", "P3", "P4", "P5", "P6"],
    "pname": ["Nut", "Bolt", "Screw", "Screw", "Cam", "Cog"],
    "color": ["Red", "Green", "Blue", "Red", "Blue", "Red"],
    "weight": [12.0, 17.0, 17.0, 14.0, 12.0, 19.0],
    "city": ["London", "Paris", "Oslo", "London", "Paris", "London"],
}

print("pandas output:")
print(
    my_agnostic_function(
        pd.DataFrame(suppliers),
        pd.DataFrame(parts),
    )
)
print("\nPolars output:")
print(
    my_agnostic_function(
        pl.LazyFrame(suppliers),
        pl.LazyFrame(parts),
    ).collect()
)
pandas output:
    s  weight_mean  weight_max
0  S1         15.0        19.0
1  S2         14.5        17.0
2  S3         14.5        17.0
3  S4         15.0        19.0

Polars output:
shape: (4, 3)
┌─────┬─────────────┬────────────┐
│ s   ┆ weight_mean ┆ weight_max │
│ --- ┆ ---         ┆ ---        │
│ str ┆ f64         ┆ f64        │
╞═════╪═════════════╪════════════╡
│ S2  ┆ 14.5        ┆ 17.0       │
│ S3  ┆ 14.5        ┆ 17.0       │
│ S4  ┆ 15.0        ┆ 19.0       │
│ S1  ┆ 15.0        ┆ 19.0       │
└─────┴─────────────┴────────────┘

Magic! 🪄

Scope

  • Do you maintain a dataframe-consuming library?
  • Is there a Polars function which you'd like Narwhals to have, which would make your job easier?

If, I'd love to hear from you!

Note: You might suspect that this is a secret ploy to infiltrate the Polars API everywhere. Indeed, you may suspect that.

Why "Narwhals"?

Because they are so awesome.

Thanks to Olha Urdeichuk for the illustration!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

narwhals-0.6.0.tar.gz (265.4 kB view details)

Uploaded Source

Built Distribution

narwhals-0.6.0-py3-none-any.whl (25.0 kB view details)

Uploaded Python 3

File details

Details for the file narwhals-0.6.0.tar.gz.

File metadata

  • Download URL: narwhals-0.6.0.tar.gz
  • Upload date:
  • Size: 265.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for narwhals-0.6.0.tar.gz
Algorithm Hash digest
SHA256 07fa5b0b1004f6f8e2e33e232003de42e42fc7da7dc4ef390aa82a4e49f43d47
MD5 8517dc6546eb9e966e6d9e291de6859d
BLAKE2b-256 06fde7c350b5b6ef0735d1ab3cd11a6b63a103f5c83f8e35443f504052d086b2

See more details on using hashes here.

File details

Details for the file narwhals-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: narwhals-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 25.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for narwhals-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4b83ed164a863c6c13af9271f59c41cae3a3e6e24468ae68b533b98c3bca34cd
MD5 8d474bf46948e2a6f8f28217033c4dda
BLAKE2b-256 6e15f36b4fc4aca32c11a76449ba6bcc2e70bd0e691ed78e1775ef74a1f6203c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page