Skip to main content

Extremely lightweight compatibility layer between pandas, Polars, cuDF, and Modin

Project description

Narwhals

narwhals_small

PyPI version Documentation

Extremely lightweight and extensible compatibility layer between Polars, pandas, Modin, and cuDF (and more!).

Seamlessly support all, without depending on any!

  • Just use a subset of the Polars API, no need to learn anything new
  • No dependencies (not even Polars), keep your library lightweight
  • ✅ Separate lazy and eager APIs
  • ✅ Use Polars Expressions
  • ✅ 100% branch coverage, tested against pandas and Polars nightly builds!

Installation

pip install narwhals

Or just vendor it, it's only a bunch of pure-Python files.

Usage

There are three steps to writing dataframe-agnostic code using Narwhals:

  1. use narwhals.from_native to wrap a pandas/Polars/Modin/cuDF DataFrame/LazyFrame in a Narwhals class

  2. use the subset of the Polars API supported by Narwhals

  3. use narwhals.to_native to return an object to the user in its original dataframe flavour. For example:

    • if you started with pandas, you'll get pandas back
    • if you started with Polars, you'll get Polars back
    • if you started with Modin, you'll get Modin back (and compute will be distributed)
    • if you started with cuDF, you'll get cuDF back (and compute will happen on GPU)

Package size

At only 0.3 MB and with zero dependencies, Narwhals is about as lightweight as it gets. Here's a comparison with Ibis (though note that the two projects have different goals and are not in competition):

Comparison between Narwhals (0.3 MB) and Ibis (~310 MB)

Example

Here's an example of a dataframe agnostic function:

from typing import Any
import pandas as pd
import polars as pl

import narwhals as nw


def my_agnostic_function(
    suppliers_native,
    parts_native,
):
    suppliers = nw.from_native(suppliers_native)
    parts = nw.from_native(parts_native)

    result = (
        suppliers.join(parts, left_on="city", right_on="city")
        .filter(nw.col("weight") > 10)
        .group_by("s")
        .agg(
            weight_mean=nw.col("weight").mean(),
            weight_max=nw.col("weight").max(),
        )
        .sort("s")
    )

    return nw.to_native(result)

You can pass in a pandas or Polars dataframe, the output will be the same! Let's try it out:

suppliers = {
    "s": ["S1", "S2", "S3", "S4", "S5"],
    "sname": ["Smith", "Jones", "Blake", "Clark", "Adams"],
    "status": [20, 10, 30, 20, 30],
    "city": ["London", "Paris", "Paris", "London", "Athens"],
}
parts = {
    "p": ["P1", "P2", "P3", "P4", "P5", "P6"],
    "pname": ["Nut", "Bolt", "Screw", "Screw", "Cam", "Cog"],
    "color": ["Red", "Green", "Blue", "Red", "Blue", "Red"],
    "weight": [12.0, 17.0, 17.0, 14.0, 12.0, 19.0],
    "city": ["London", "Paris", "Oslo", "London", "Paris", "London"],
}

print("pandas output:")
print(
    my_agnostic_function(
        pd.DataFrame(suppliers),
        pd.DataFrame(parts),
    )
)
print("\nPolars output:")
print(
    my_agnostic_function(
        pl.LazyFrame(suppliers),
        pl.LazyFrame(parts),
    ).collect()
)
pandas output:
    s  weight_mean  weight_max
0  S1         15.0        19.0
1  S2         14.5        17.0
2  S3         14.5        17.0
3  S4         15.0        19.0

Polars output:
shape: (4, 3)
┌─────┬─────────────┬────────────┐
│ s   ┆ weight_mean ┆ weight_max │
│ --- ┆ ---         ┆ ---        │
│ str ┆ f64         ┆ f64        │
╞═════╪═════════════╪════════════╡
│ S1  ┆ 15.0        ┆ 19.0       │
│ S2  ┆ 14.5        ┆ 17.0       │
│ S3  ┆ 14.5        ┆ 17.0       │
│ S4  ┆ 15.0        ┆ 19.0       │
└─────┴─────────────┴────────────┘

Magic! 🪄

Scope

  • Do you maintain a dataframe-consuming library?
  • Is there a Polars function which you'd like Narwhals to have, which would make your work easier?

If, I'd love to hear from you!

Note: You might suspect that this is a secret ploy to infiltrate the Polars API everywhere. Indeed, you may suspect that.

Why "Narwhals"?

Coz they are so awesome.

Thanks to Olha Urdeichuk for the illustration!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

narwhals-0.7.10.tar.gz (298.1 kB view details)

Uploaded Source

Built Distribution

narwhals-0.7.10-py3-none-any.whl (35.0 kB view details)

Uploaded Python 3

File details

Details for the file narwhals-0.7.10.tar.gz.

File metadata

  • Download URL: narwhals-0.7.10.tar.gz
  • Upload date:
  • Size: 298.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for narwhals-0.7.10.tar.gz
Algorithm Hash digest
SHA256 cec5d535c80e4a82e11ae14f6dc552298f1a45fdc7001bd97881b54ad288c8ee
MD5 b483e3b8ff2394b51115a3b18a5d2716
BLAKE2b-256 6dbebf4fcf66e09e43d1ec47f580a97c73d75dc99c24eebd18231a4399a35094

See more details on using hashes here.

Provenance

File details

Details for the file narwhals-0.7.10-py3-none-any.whl.

File metadata

  • Download URL: narwhals-0.7.10-py3-none-any.whl
  • Upload date:
  • Size: 35.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for narwhals-0.7.10-py3-none-any.whl
Algorithm Hash digest
SHA256 6860ba85050069af966f8cda40139a66a2e5a5be7c23d1d459542f7811d1ff53
MD5 4a25ce7f425d39a00b1b8cbd240a9404
BLAKE2b-256 f3f2b4dccde7c755d185eee7cad133a0b4e6d97bf28796ddb22fda710b3c5fa1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page