Skip to main content

Extremely lightweight compatibility layer between pandas, Polars, cuDF, and Modin

Project description

Narwhals

narwhals_small

PyPI version Documentation

Extremely lightweight and extensible compatibility layer between Polars, pandas, Modin, and cuDF (and more!).

Seamlessly support all, without depending on any!

  • Just use a subset of the Polars API, no need to learn anything new
  • No dependencies (not even Polars), keep your library lightweight
  • ✅ Separate lazy and eager APIs
  • ✅ Use Polars Expressions
  • ✅ 100% branch coverage, tested against pandas and Polars nightly builds!

Installation

pip install narwhals

Or just vendor it, it's only a bunch of pure-Python files.

Usage

There are three steps to writing dataframe-agnostic code using Narwhals:

  1. use narwhals.from_native to wrap a pandas/Polars/Modin/cuDF DataFrame/LazyFrame in a Narwhals class

  2. use the subset of the Polars API supported by Narwhals

  3. use narwhals.to_native to return an object to the user in its original dataframe flavour. For example:

    • if you started with pandas, you'll get pandas back
    • if you started with Polars, you'll get Polars back
    • if you started with Modin, you'll get Modin back (and compute will be distributed)
    • if you started with cuDF, you'll get cuDF back (and compute will happen on GPU)

Package size

Like Ibis, Narwhals aims to enable dataframe-agnostic code. However, Narwhals comes with zero dependencies, is about as lightweight as it gets, and is aimed at library developers rather than at end users. It also does not aim to support as many backends, preferring to instead focus on dataframes.

The projects are not in competition, and the comparison is intended only to help you choose the right tool for the right task.

Here is the package size increase which would result from installing each tool in a non-pandas environment:

Comparison between Narwhals (0.3 MB) and Ibis (~310 MB)

Example

Here's an example of a dataframe agnostic function:

from typing import Any
import pandas as pd
import polars as pl

import narwhals as nw


def my_agnostic_function(
    suppliers_native,
    parts_native,
):
    suppliers = nw.from_native(suppliers_native)
    parts = nw.from_native(parts_native)

    result = (
        suppliers.join(parts, left_on="city", right_on="city")
        .filter(nw.col("weight") > 10)
        .group_by("s")
        .agg(
            weight_mean=nw.col("weight").mean(),
            weight_max=nw.col("weight").max(),
        )
        .sort("s")
    )

    return nw.to_native(result)

You can pass in a pandas or Polars dataframe, the output will be the same! Let's try it out:

suppliers = {
    "s": ["S1", "S2", "S3", "S4", "S5"],
    "sname": ["Smith", "Jones", "Blake", "Clark", "Adams"],
    "status": [20, 10, 30, 20, 30],
    "city": ["London", "Paris", "Paris", "London", "Athens"],
}
parts = {
    "p": ["P1", "P2", "P3", "P4", "P5", "P6"],
    "pname": ["Nut", "Bolt", "Screw", "Screw", "Cam", "Cog"],
    "color": ["Red", "Green", "Blue", "Red", "Blue", "Red"],
    "weight": [12.0, 17.0, 17.0, 14.0, 12.0, 19.0],
    "city": ["London", "Paris", "Oslo", "London", "Paris", "London"],
}

print("pandas output:")
print(
    my_agnostic_function(
        pd.DataFrame(suppliers),
        pd.DataFrame(parts),
    )
)
print("\nPolars output:")
print(
    my_agnostic_function(
        pl.LazyFrame(suppliers),
        pl.LazyFrame(parts),
    ).collect()
)
pandas output:
    s  weight_mean  weight_max
0  S1         15.0        19.0
1  S2         14.5        17.0
2  S3         14.5        17.0
3  S4         15.0        19.0

Polars output:
shape: (4, 3)
┌─────┬─────────────┬────────────┐
│ s   ┆ weight_mean ┆ weight_max │
│ --- ┆ ---         ┆ ---        │
│ str ┆ f64         ┆ f64        │
╞═════╪═════════════╪════════════╡
│ S1  ┆ 15.0        ┆ 19.0       │
│ S2  ┆ 14.5        ┆ 17.0       │
│ S3  ┆ 14.5        ┆ 17.0       │
│ S4  ┆ 15.0        ┆ 19.0       │
└─────┴─────────────┴────────────┘

Magic! 🪄

Scope

  • Do you maintain a dataframe-consuming library?
  • Is there a Polars function which you'd like Narwhals to have, which would make your work easier?

If, I'd love to hear from you!

Note: You might suspect that this is a secret ploy to infiltrate the Polars API everywhere. Indeed, you may suspect that.

Why "Narwhals"?

Coz they are so awesome.

Thanks to Olha Urdeichuk for the illustration!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

narwhals-0.7.15.tar.gz (302.3 kB view details)

Uploaded Source

Built Distribution

narwhals-0.7.15-py3-none-any.whl (37.0 kB view details)

Uploaded Python 3

File details

Details for the file narwhals-0.7.15.tar.gz.

File metadata

  • Download URL: narwhals-0.7.15.tar.gz
  • Upload date:
  • Size: 302.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for narwhals-0.7.15.tar.gz
Algorithm Hash digest
SHA256 265aa204cbaa2f0b03041dedabb7dfed8266a45bf93d019fa260dfaa9e1f387d
MD5 073e3477c6ad837eada7c57e4101e506
BLAKE2b-256 fa5038adf9be800edda0d3e86814bd195fb7cce38a4e35a009e9f956a17f021f

See more details on using hashes here.

Provenance

File details

Details for the file narwhals-0.7.15-py3-none-any.whl.

File metadata

  • Download URL: narwhals-0.7.15-py3-none-any.whl
  • Upload date:
  • Size: 37.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for narwhals-0.7.15-py3-none-any.whl
Algorithm Hash digest
SHA256 ad8fcbd1d3ce06c5a55e6842718787b8d8db8dfce386f4a43c2d8faece77f322
MD5 e5a1549ff7f09557316bae7a2126955c
BLAKE2b-256 8441993329eec0af7c3eead22bac557b7244fa4bb67d360582955ebe86282e1b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page