Skip to main content

Extremely lightweight compatibility layer between pandas, Polars, cuDF, and Modin

Project description

Narwhals

narwhals_small

PyPI version

Extremely lightweight and extensible compatibility layer between Polars, pandas, Modin, and cuDF (and more!).

Seamlessly support all, without depending on any!

  • Just use a subset of the Polars API, no need to learn anything new
  • Zero dependencies, Narwhals only uses what the user passes in so your library can stay lightweight
  • ✅ Separate lazy and eager APIs, use expressions
  • ✅ Support pandas' complicated type system and index, without either getting in the way
  • 100% branch coverage, tested against pandas and Polars nightly builds
  • Negligible overhead, see overhead
  • ✅ Let your IDE help you thanks to full static typing, see typing
  • Perfect backwards compatibility policy, see stable api for how to opt-in

Used by / integrates with

Join the party!

Feel free to add your project to the list if it's missing, and/or chat with us on Discord if you'd like any support.

Installation

  • pip (recommended, as it's the most up-to-date)
    pip install narwhals
    
  • conda-forge (also fine, but the latest version may take longer to appear)
    conda install -c conda-forge narwhals
    

Usage

There are three steps to writing dataframe-agnostic code using Narwhals:

  1. use narwhals.from_native to wrap a pandas/Polars/Modin/cuDF DataFrame/LazyFrame in a Narwhals class

  2. use the subset of the Polars API supported by Narwhals

  3. use narwhals.to_native to return an object to the user in its original dataframe flavour. For example:

    • if you started with pandas, you'll get pandas back
    • if you started with Polars, you'll get Polars back
    • if you started with Modin, you'll get Modin back (and compute will be distributed)
    • if you started with cuDF, you'll get cuDF back (and compute will happen on GPU)

What about Ibis?

Like Ibis, Narwhals aims to enable dataframe-agnostic code. However, Narwhals comes with zero dependencies, is about as lightweight as it gets, and is aimed at library developers rather than at end users. It also does not aim to support as many backends, instead preferring to focus on dataframes. So, which should you use?

  • If you need a SQL frontend in Python: Ibis!
  • If you're a library maintainer and want a lightweight and minimal-overhead layer to get cross-dataframe library support: Narwhals!

Here is the package size increase which would result from installing each tool in a non-pandas environment:

image

Example

See the tutorial for several examples!

Scope

  • Do you maintain a dataframe-consuming library?
  • Do you have a specific Polars function in mind that you would like Narwhals to have in order to make your work easier?

If you said yes to both, we'd love to hear from you!

Note: You might suspect that this is a secret ploy to infiltrate the Polars API everywhere. Indeed, you may suspect that.

Why "Narwhals"?

Coz they are so awesome.

Thanks to Olha Urdeichuk for the illustration!

Project details


Release history Release notifications | RSS feed

This version

1.0.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

narwhals-1.0.2.tar.gz (83.6 kB view details)

Uploaded Source

Built Distribution

narwhals-1.0.2-py3-none-any.whl (93.7 kB view details)

Uploaded Python 3

File details

Details for the file narwhals-1.0.2.tar.gz.

File metadata

  • Download URL: narwhals-1.0.2.tar.gz
  • Upload date:
  • Size: 83.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for narwhals-1.0.2.tar.gz
Algorithm Hash digest
SHA256 e85177fb1cd365fd8d00900ce32044652e0b58ee85513e66776f3cdac8e84258
MD5 7873955eaf85895d9d7f44e17c3c0c44
BLAKE2b-256 8c8faeda45bc1b475e97d1ea3348bfdada92ec7160f36877d010425d9669e8d6

See more details on using hashes here.

File details

Details for the file narwhals-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: narwhals-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 93.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for narwhals-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 cfc95af4d8ad3117e2537a0cd211b4ec2bd9f486c9999162f9020bdc4698bfd0
MD5 2990df15dad4141150474dce6bfce5a7
BLAKE2b-256 3517be4e1b11352e7dc487a2f8666571436c6f36d1608064eacac12850242819

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page