Skip to main content

Spark Structured Streaming multithread in IPython Notebooks

Project description

Spark multithread in IPython Notebooks.

It’s now simple to execute Spark Structured Streaming in Jupyter Notebooks

Install

pip install nbthread_spark --process-dependency-links

Usage

Given a Socket Stream:

TCP_IP = "localhost"
TCP_PORT = 9005

from pyspark.sql.functions import from_json
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StructType, IntegerType

schema = StructType([
    StructField("bip", IntegerType(), True),
    StructField("is_on", IntegerType(), True)
])

spark = SparkSession \
    .builder \
    .appName("IOTStreamApp") \
    .getOrCreate()

iot_stream = spark \
    .readStream \
    .format("socket") \
    .option("host", TCP_IP) \
    .option("port", TCP_PORT) \
    .load()

iot_expanded = iot_stream.withColumn('value_json',
                                    from_json('value', schema)
                                    ).drop('value').select('value_json.*')

query = iot_expanded \
    .writeStream \
    .outputMode("update") \
    .format("memory") \
    .queryName("iot_table") \
    .start()

You can run queries using this:

from nbthread_spark.stream import StreamRunner

runner = StreamRunner(query)

runner.controls()
## you will see buttons ;)

runner.start() # start without controls

runner.status() # show stream status

runner.stop() # stop streaming and thread

For Stream Manager you can control lot of streams in a easy way:

from nbthread_spark.manager import StreamManager

sm = StreamManager()

sm.append(runner)
sm.append(runner1)
sm.append(runner2)

sm.all_controls()
## you will see all buttons from streams ;)

sm.start_all() # start all streams

sm.stop_all() # stop all streams

Special Thanks

Here the list of students that contribute with this module.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nbthread_spark-0.0.5.tar.gz (2.7 kB view details)

Uploaded Source

File details

Details for the file nbthread_spark-0.0.5.tar.gz.

File metadata

File hashes

Hashes for nbthread_spark-0.0.5.tar.gz
Algorithm Hash digest
SHA256 8da4c4d5f7877f9513f4df4f4be386fb1c301cbefe7ac8a87bf4485277263407
MD5 0bf2e2a2b9ace4364d94effe108c73c9
BLAKE2b-256 9314bd9ac9392c682eb45834ef8dc4952f4f1a2afe9ee375451e10dcf1c6191c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page