Skip to main content

Extension for MoSeq-extract output

Project description

ndx-depth-moseq Extension for NWB

ndx-depth-moseq is a standardized format for storing the output of depth-moseq, an automatic motion sequencing algorithm, in NWB. Currently, this extension only supports the output of depth-moseq-extract, but will be extended as needed to cover the other types of depth-moseq outputs.

This extension consists of 3 new neurodata types:

  • DepthImageSeries, which is a simple extension of pynwb.image.ImageSeries for depth video with a constant reference depth.
  • MoSeqExtractParameterGroup, which stores all the various parameters from the depth-moseq-extract algorithm.
  • MoSeqExtractGroup, which stores all the relevant depth-moseq outputs including the DepthImageSeries, MoSeqExtractParameterGroup, as well as various native neurodata types such as the Position.

Installation

pip install ndx-depth-moseq

Usage

"""Example of usage with mock data."""
from datetime import datetime
from pytz import timezone
import numpy as np
from pynwb.image import GrayscaleImage, ImageMaskSeries
from pynwb import NWBFile, TimeSeries
from pynwb.behavior import (
    CompassDirection,
    Position,
    SpatialSeries,
)
from ndx_depth_moseq import DepthImageSeries, MoSeqExtractGroup, MoSeqExtractParameterGroup

# Define mock data (this will be replaced with the actual data) 
version = "0.1.0"
num_frames = 10
num_rows = 512
num_cols = 424
processed_depth_video = np.zeros((num_frames, num_rows, num_cols))
loglikelihood_video = np.zeros((num_frames, num_rows, num_cols))
timestamps = np.arange(num_frames)
background = np.zeros((num_rows, num_cols))
is_flipped = np.zeros(num_frames, dtype=bool)
roi = np.zeros((num_rows, num_cols))
true_depth = 1.0
kinematic_var_names = ['centroid_x_mm', 'centroid_y_mm', 'height_ave_mm', 'angle', 'velocity_2d_mm', 'velocity_3d_mm', 'velocity_theta', 'length_mm', 'width_mm', 'area_px', 'width_px', 'length_px']
kinematic_vars = {k: np.zeros(num_frames) for k in kinematic_var_names}
kinematic_vars['length_px'] += 1
kinematic_vars['width_px'] += 1
parameters = {
    'angle_hampel_sig': np.array([3], dtype=np.int64)[0],
    'angle_hampel_span': np.array([5], dtype=np.int64)[0],
    'bg_roi_depth_range_min': np.array([0], dtype=np.int64)[0],
    'bg_roi_depth_range_max': np.array([1000], dtype=np.int64)[0],
    'bg_roi_dilate_x': np.array([10], dtype=np.int64)[0],
    'bg_roi_dilate_y': np.array([10], dtype=np.int64)[0],
    'bg_roi_fill_holes': True,
    'bg_roi_gradient_filter': True,
    'bg_roi_gradient_kernel': np.array([5], dtype=np.int64)[0],
    'bg_roi_gradient_threshold': np.array([10], dtype=np.int64)[0],
    'bg_roi_index': np.array([0], dtype=np.int64)[0],
    'bg_roi_shape': 'ellipse',
    'bg_roi_weight_area': np.array([0.5], dtype=np.float64)[0],
    'bg_roi_weight_extent': np.array([0.5], dtype=np.float64)[0],
    'bg_roi_weight_dist': np.array([0.5], dtype=np.float64)[0],
    'cable_filter_iters': np.array([5], dtype=np.int64)[0],
    'cable_filter_shape': 'ellipse',
    'cable_filter_size_x': np.array([5], dtype=np.int64)[0],
    'cable_filter_size_y': np.array([5], dtype=np.int64)[0],
    'centroid_hampel_sig': np.array([3], dtype=np.int64)[0],
    'centroid_hampel_span': np.array([5], dtype=np.int64)[0],
    'chunk_overlap': np.array([0], dtype=np.int64)[0],
    'chunk_size': np.array([100], dtype=np.int64)[0],
    'compress': False,
    'compress_chunk_size': np.array([100], dtype=np.int64)[0],
    'compress_threads': np.array([1], dtype=np.int64)[0],
    'config_file': 'config.yaml',
    'crop_size_width': np.array([512], dtype=np.int64)[0],
    'crop_size_height': np.array([424], dtype=np.int64)[0],
    'flip_classifier': 'flip_classifier.pkl',
    'flip_classifier_smoothing': np.array([5], dtype=np.int64)[0],
    'fps': np.array([30], dtype=np.int64)[0],
    'frame_dtype': 'uint16',
    'frame_trim_beginning': np.array([0], dtype=np.int64)[0],
    'frame_trim_end': np.array([0], dtype=np.int64)[0],
    'max_height': np.array([1000], dtype=np.int64)[0],
    'min_height': np.array([0], dtype=np.int64)[0],
    'model_smoothing_clips_x': np.array([5], dtype=np.int64)[0],
    'model_smoothing_clips_y': np.array([5], dtype=np.int64)[0],
    'spatial_filter_size': np.array([5], dtype=np.int64)[0],
    'tail_filter_iters': np.array([5], dtype=np.int64)[0],
    'tail_filter_shape': 'ellipse',
    'tail_filter_size_x': np.array([5], dtype=np.int64)[0],
    'tail_filter_size_y': np.array([5], dtype=np.int64)[0],
    'temporal_filter_size': np.array([5], dtype=np.int64)[0],
    'tracking_model_init': 'mean',
    'tracking_model_ll_clip': np.array([5], dtype=np.int64)[0],
    'tracking_model_ll_threshold': np.array([5], dtype=np.int64)[0],
    'tracking_model_mask_threshold': np.array([5], dtype=np.int64)[0],
    'tracking_model_segment': True,
    'use_plane_bground': True,
    'use_tracking_model': True,
    'write_movie': False,
}

# Create the NWB file
nwbfile = NWBFile(
    session_description="session_description",
    identifier="identifier",
    session_start_time=datetime.now(timezone("US/Pacific")),
)

# Add Imaging Data
kinect = nwbfile.create_device(name="kinect", manufacturer="Microsoft", description="Microsoft Kinect 2")
flipped_series = TimeSeries(
    name="flipped_series",
    data=is_flipped,
    unit="a.u.",
    timestamps=timestamps,
    description="Boolean array indicating whether the image was flipped left/right",
)
processed_depth_video = DepthImageSeries(
    name="processed_depth_video",
    data=processed_depth_video,
    unit="millimeters",
    format="raw",
    timestamps=flipped_series.timestamps,
    description="3D array of depth frames (nframes x w x h, in mm)",
    distant_depth=true_depth,
    device=kinect,
)
loglikelihood_video = ImageMaskSeries(
    name="loglikelihood_video",
    data=loglikelihood_video,
    masked_imageseries=processed_depth_video,
    unit="a.u.",
    format="raw",
    timestamps=flipped_series.timestamps,
    description="Log-likelihood values from the tracking model (nframes x w x h)",
    device=kinect,
)
background = GrayscaleImage(
    name="background",
    data=background,
    description="Computed background image.",
)
roi = GrayscaleImage(
    name="roi",
    data=roi,
    description="Computed region of interest.",
)

# Add Position Data
position_data = np.vstack(
    (kinematic_vars["centroid_x_mm"], kinematic_vars["centroid_y_mm"], kinematic_vars["height_ave_mm"])
).T
position_series = SpatialSeries(
    name="position",
    description="Position (x, y, height) in an open field.",
    data=position_data,
    timestamps=flipped_series.timestamps,
    reference_frame="top left",
    unit="mm",
)
position = Position(spatial_series=position_series, name="position")

# Add Compass Direction Data
heading_2d_series = SpatialSeries(
    name="heading_2d",
    description="Head orientation.",
    data=kinematic_vars["angle"],
    timestamps=flipped_series.timestamps,
    reference_frame="top left",
    unit="radians",
)
heading_2d = CompassDirection(spatial_series=heading_2d_series, name="heading_2d")

# Add speed/velocity data
speed_2d = TimeSeries(
    name="speed_2d",
    description="2D speed (mm / frame), note that missing frames are not accounted for",
    data=kinematic_vars["velocity_2d_mm"],
    timestamps=flipped_series.timestamps,
    unit="mm/frame",
)
speed_3d = TimeSeries(
    name="speed_3d",
    description="3D speed (mm / frame), note that missing frames are not accounted for",
    data=kinematic_vars["velocity_3d_mm"],
    timestamps=flipped_series.timestamps,
    unit="mm/frame",
)
angular_velocity_2d = TimeSeries(
    name="angular_velocity_2d",
    description="Angular component of velocity (arctan(vel_x, vel_y))",
    data=kinematic_vars["velocity_theta"],
    timestamps=flipped_series.timestamps,
    unit="radians/frame",
)

# Add length/width/area data
length = TimeSeries(
    name="length",
    description="Length of mouse (mm)",
    data=kinematic_vars["length_mm"],
    timestamps=flipped_series.timestamps,
    unit="mm",
)
width = TimeSeries(
    name="width",
    description="Width of mouse (mm)",
    data=kinematic_vars["width_mm"],
    timestamps=flipped_series.timestamps,
    unit="mm",
)
width_px_to_mm = kinematic_vars["width_mm"] / kinematic_vars["width_px"]
length_px_to_mm = kinematic_vars["length_mm"] / kinematic_vars["length_px"]
area_px_to_mm2 = width_px_to_mm * length_px_to_mm
area_mm2 = kinematic_vars["area_px"] * area_px_to_mm2
area = TimeSeries(
    name="area",
    description="Pixel-wise area of mouse (mm^2)",
    data=area_mm2,
    timestamps=flipped_series.timestamps,
    unit="mm^2",
)

# Add Parameters
parameters = MoSeqExtractParameterGroup(name="parameters", **parameters)

# Add MoseqExtractGroup
moseq_extract_group = MoSeqExtractGroup(
    name="moseq_extract_group",
    version=version,
    parameters=parameters,
    background=background,
    processed_depth_video=processed_depth_video,
    loglikelihood_video=loglikelihood_video,
    roi=roi,
    flipped_series=flipped_series,
    depth_camera=kinect,
    position=position,
    heading_2d=heading_2d,
    speed_2d=speed_2d,
    speed_3d=speed_3d,
    angular_velocity_2d=angular_velocity_2d,
    length=length,
    width=width,
    area=area,
)
# Add data into a behavioral processing module
behavior_module = nwbfile.create_processing_module(
    name="behavior",
    description="Processed behavioral data from MoSeq",
)
behavior_module.add(moseq_extract_group)

This extension was created using ndx-template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ndx-depth-moseq-0.1.2.tar.gz (18.0 kB view details)

Uploaded Source

Built Distribution

ndx_depth_moseq-0.1.2-py2.py3-none-any.whl (8.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ndx-depth-moseq-0.1.2.tar.gz.

File metadata

  • Download URL: ndx-depth-moseq-0.1.2.tar.gz
  • Upload date:
  • Size: 18.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for ndx-depth-moseq-0.1.2.tar.gz
Algorithm Hash digest
SHA256 6a849b6c712f944b6ef5dbaa4a46f9b1a771e0fdddc590a5bcd800e4230d305d
MD5 0e88f4f951460abe55bbc8e3327f7906
BLAKE2b-256 92103fdc7ad86a7512e8bc104234407239551b75f3845896f8e700781ef43a62

See more details on using hashes here.

Provenance

File details

Details for the file ndx_depth_moseq-0.1.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for ndx_depth_moseq-0.1.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 89cef6e36ad367755b2d5a6fd48c2c31d9bb0ada72371f4838c4db9d8e771ba4
MD5 a44ddc66c65b342794d4992e69bdb987
BLAKE2b-256 0a22dcd03b903566c8da021a5dcc2251577011f4a2aedf890dd90dc66da6565a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page