Skip to main content

NWB extensions for storing hierarchical behavioral data

Project description

ndx-hierarchical-behavioral-data Extension for NWB

PyPI version

schema schema

Installation

pip install ndx-hierarchical-behavioral-data

Usage

Use pre-made hierarchical transcription tables:

from ndx_hierarchical_behavioral_data.definitions.transcription import TIPhonemes, HBTSyllables, HBTWords, HBTSentences

# Phonemes level
phonemes = TIPhonemes()
phonemes.add_column('max_pitch', 'maximum pitch for this phoneme. NaN for unvoiced')
for i, p in enumerate('abcdefghijkl'):
    phonemes.add_interval(label=p, start_time=float(i), stop_time=float(i+1), max_pitch=i**2)

# Syllables level
syllables = HBTSyllables(lower_tier_table=phonemes)
syllables.add_interval(label='abc', next_tier=[0, 1, 2])
syllables.add_interval(label='def', next_tier=[3, 4, 5])
syllables.add_interval(label='ghi', next_tier=[6, 7, 8])
syllables.add_interval(label='jkl', next_tier=[9, 10, 11])

# Words level
words = HBTWords(lower_tier_table=syllables)
words.add_column('emphasis', 'boolean indicating whether this word was emphasized')
words.add_interval(label='A-F', next_tier=[0, 1], emphasis=False)
words.add_interval(label='G-L', next_tier=[2, 3], emphasis=True)

# Sentences level
sentences = HBTSentences(lower_tier_table=words)
sentences.add_interval(label='A-L', next_tier=[0, 1])

View individual tiers:

sentences.to_dataframe()
labelstart_timestop_timenext_tier
id
0A-L0.012.0label start_time stop_time \\id ...
words.to_dataframe()
label start_time stop_time next_tier emphasis
id
0 A-F 0.0 6.0 label start_time stop_time \\ id 0 abc 0.0 3.0 1 def 3.0 6.0 next_tier id 0 start_time stop_time label max_pitch id 0 0.0 1.0 a 0 1 1.0 2.0 b 1 2 2.0 3.0 c 4 1 start_time stop_time label max_pitch id 3 3.0 4.0 d 9 4 4.0 5.0 e 16 5 5.0 6.0 f 25 False
1 G-L 6.0 12.0 label start_time stop_time \\ id 2 ghi 6.0 9.0 3 jkl 9.0 12.0 next_tier id 2 start_time stop_time label max_pitch id 6 6.0 7.0 g 36 7 7.0 8.0 h 49 8 8.0 9.0 i 64 3 start_time stop_time label max_pitch id 9 9.0 10.0 j 81 10 10.0 11.0 k 100 11 11.0 12.0 l 121 True
syllables.to_dataframe()
labelstart_timestop_timenext_tier
id
0 abc 0.0 3.0 start_time stop_time label id 0 0.0 1.0 a 1 1.0 2.0 b 2 2.0 3.0 c
1 def 3.0 6.0 start_time stop_time label id 3 3.0 4.0 d 4 4.0 5.0 e 5 5.0 6.0 f
2 ghi 6.0 9.0 start_time stop_time label id 6 6.0 7.0 g 7 7.0 8.0 h 8 8.0 9.0 i
3 jkl 9.0 12.0 start_time stop_time label id 9 9.0 10.0 j 10 10.0 11.0 k 11 11.0 12.0 l
phonemes.to_dataframe()
start_time stop_time label max_pitch
id
0 0.0 1.0 a 0
1 1.0 2.0 b 1
2 2.0 3.0 c 4
3 3.0 4.0 d 9
4 4.0 5.0 e 16
5 5.0 6.0 f 25
6 6.0 7.0 g 36
7 7.0 8.0 h 49
8 8.0 9.0 i 64
9 9.0 10.0 j 81
10 10.0 11.0 k 100
11 11.0 12.0 l 121

Hierarchical dataframe:

sentences.to_hierarchical_dataframe()
source_table phonemes
label id start_time stop_time label max_pitch
sentences_id sentences_label sentences_start_time sentences_stop_time words_id words_label words_start_time words_stop_time words_emphasis syllables_id syllables_label syllables_start_time syllables_stop_time
0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 0 abc 0.0 3.0 0 0.0 1.0 a 0
3.0 1 1.0 2.0 b 1
3.0 2 2.0 3.0 c 4
1 def 3.0 6.0 3 3.0 4.0 d 9
6.0 4 4.0 5.0 e 16
6.0 5 5.0 6.0 f 25
1 G-L 6.0 12.0 True 2 ghi 6.0 9.0 6 6.0 7.0 g 36
9.0 7 7.0 8.0 h 49
9.0 8 8.0 9.0 i 64
3 jkl 9.0 12.0 9 9.0 10.0 j 81
12.0 10 10.0 11.0 k 100
12.0 11 11.0 12.0 l 121

Hierachical columns, flattened rows:

from hdmf.common.hierarchicaltable import flatten_column_index

flatten_column_index(sentences.to_hierarchical_dataframe(), 1)
id start_time stop_time label max_pitch
sentences_id sentences_label sentences_start_time sentences_stop_time words_id words_label words_start_time words_stop_time words_emphasis syllables_id syllables_label syllables_start_time syllables_stop_time
0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 0 abc 0.0 3.0 0 0.0 1.0 a 0
3.0 1 1.0 2.0 b 1
3.0 2 2.0 3.0 c 4
1 def 3.0 6.0 3 3.0 4.0 d 9
6.0 4 4.0 5.0 e 16
6.0 5 5.0 6.0 f 25
1 G-L 6.0 12.0 True 2 ghi 6.0 9.0 6 6.0 7.0 g 36
9.0 7 7.0 8.0 h 49
9.0 8 8.0 9.0 i 64
3 jkl 9.0 12.0 9 9.0 10.0 j 81
12.0 10 10.0 11.0 k 100
12.0 11 11.0 12.0 l 121

Denormalized dataframe:

from hdmf.common.hierarchicaltable import to_hierarchical_dataframe

to_hierarchical_dataframe(sentences).reset_index()
source_table sentences words syllables phonemes
label id label start_time stop_time id label start_time stop_time emphasis id label start_time stop_time id start_time stop_time label max_pitch
0 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 0 abc 0.0 3.0 0 0.0 1.0 a 0
1 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 0 abc 0.0 3.0 1 1.0 2.0 b 1
2 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 0 abc 0.0 3.0 2 2.0 3.0 c 4
3 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 1 def 3.0 6.0 3 3.0 4.0 d 9
4 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 1 def 3.0 6.0 4 4.0 5.0 e 16
5 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 1 def 3.0 6.0 5 5.0 6.0 f 25
6 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 2 ghi 6.0 9.0 6 6.0 7.0 g 36
7 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 2 ghi 6.0 9.0 7 7.0 8.0 h 49
8 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 2 ghi 6.0 9.0 8 8.0 9.0 i 64
9 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 3 jkl 9.0 12.0 9 9.0 10.0 j 81
10 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 3 jkl 9.0 12.0 10 10.0 11.0 k 100
11 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 3 jkl 9.0 12.0 11 11.0 12.0 l 121

Denormalized dataframe with flattened columns:

from hdmf.common.hierarchicaltable import flatten_column_index

flatten_column_index(sentences.to_hierarchical_dataframe(), 1).reset_index()
sentences_id sentences_label sentences_start_time sentences_stop_time words_id words_label words_start_time words_stop_time words_emphasis syllables_id syllables_label syllables_start_time syllables_stop_time id start_time stop_time label max_pitch
0 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 0 abc 0.0 3.0 0 0.0 1.0 a 0
1 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 0 abc 0.0 3.0 1 1.0 2.0 b 1
2 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 0 abc 0.0 3.0 2 2.0 3.0 c 4
3 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 1 def 3.0 6.0 3 3.0 4.0 d 9
4 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 1 def 3.0 6.0 4 4.0 5.0 e 16
5 0 A-L 0.0 12.0 0 A-F 0.0 6.0 False 1 def 3.0 6.0 5 5.0 6.0 f 25
6 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 2 ghi 6.0 9.0 6 6.0 7.0 g 36
7 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 2 ghi 6.0 9.0 7 7.0 8.0 h 49
8 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 2 ghi 6.0 9.0 8 8.0 9.0 i 64
9 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 3 jkl 9.0 12.0 9 9.0 10.0 j 81
10 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 3 jkl 9.0 12.0 10 10.0 11.0 k 100
11 0 A-L 0.0 12.0 1 G-L 6.0 12.0 True 3 jkl 9.0 12.0 11 11.0 12.0 l 121

This extension was created using ndx-template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ndx-hierarchical-behavioral-data-0.1.2.tar.gz (23.8 kB view details)

Uploaded Source

Built Distribution

ndx_hierarchical_behavioral_data-0.1.2-py2.py3-none-any.whl (15.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ndx-hierarchical-behavioral-data-0.1.2.tar.gz.

File metadata

File hashes

Hashes for ndx-hierarchical-behavioral-data-0.1.2.tar.gz
Algorithm Hash digest
SHA256 51c9ceaeff91d94a5f87825282135a25a9410b417feaeee6520ce5d3aeaebcc1
MD5 d1082277a6ff7db9716eb4749f8bcdeb
BLAKE2b-256 d68dc1bc28043c951d4c9e2a2796f2fb02eedc3d3cb0d028a1066c35262b20dd

See more details on using hashes here.

File details

Details for the file ndx_hierarchical_behavioral_data-0.1.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for ndx_hierarchical_behavioral_data-0.1.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 998938256e8128077aec932f66883d8d9f69580b5226f47c5862883058b4dda0
MD5 fa23967c18efc79a3395906c09a63dca
BLAKE2b-256 d8dfe84fe4e68a51bea3ac0797aec0bf14051d05976540aad0ca4fd07cb53a4f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page