Represent metadata for Miniscope acquisition system.
Project description
ndx-miniscope Extension for NWB
This is a Neurodata Extension (NDX) for Neurodata Without Borders (NWB) 2.0 for Miniscope acquisition data.
Miniscope
extends the Device
core NWB neurodata_type by including additional metadata for the Miniscope.
Depending on the version of the acquisition software the data structure can be quite different.
Miniscope V4 format
The data recorded by the software is saved in a folder structure similar to this:
C6-J588_Disc5/ (main folder)
├── 15_03_28/ (subfolder corresponding to the recording time)
│ ├── Miniscope/ (subfolder containing the microscope video stream)
│ │ ├── 0.avi (microscope video)
│ │ ├── metaData.json (metadata for the microscope device)
│ │ └── timeStamps.csv (timing of this video stream)
│ ├── BehavCam_2/ (subfolder containing the behavioral video stream)
│ │ ├── 0.avi (bevavioral video)
│ │ ├── metaData.json (metadata for the behavioral camera)
│ │ └── timeStamps.csv (timing of this video stream)
│ └── metaData.json (metadata for the recording, such as the start time)
├── 15_06_28/
│ ├── Miniscope/
│ ├── BehavCam_2/
│ └── metaData.json
└── 15_12_28/
Miniscope V3 format
The Miniscope V3 acquisition software generally outputs the following files:
- msCam[##].avi
- behavCam[##].avi
- timestamp.dat
- settings_and_notes.dat
python
Installation
Get most recent release:
pip install ndx-miniscope
Install latest:
git clone https://github.com/catalystneuro/ndx-miniscope.git
cd ndx-miniscope
pip install -e .
The following code demonstrates the usage of this extension to convert Miniscope acquisition data into NWB.
Usage
from datetime import datetime
from dateutil.tz import tzlocal
import glob
import os
from pynwb import NWBFile, NWBHDF5IO
from pynwb.image import ImageSeries
from natsort import natsorted
from ndx_miniscope.utils import (
add_miniscope_device,
get_starting_frames,
get_timestamps,
read_miniscope_config,
read_notes,
)
# The main folder that contains subfolders with the Miniscope data
folder_path = "C6-J588_Disc5/"
# Create the NWBFile
session_start_time = datetime(2017, 4, 15, 12, tzinfo=tzlocal())
nwbfile = NWBFile(
session_description="session_description",
identifier="identifier",
session_start_time=session_start_time,
)
# Load the miscroscope settings
miniscope_folder_path = "C6-J588_Disc5/15_03_28/Miniscope/"
miniscope_metadata = read_miniscope_config(folder_path=miniscope_folder_path)
# Create the Miniscope device with the microscope metadata and add it to NWB
add_miniscope_device(nwbfile=nwbfile, device_metadata=miniscope_metadata)
# Load the behavioral camera settings
behavcam_folder_path = "C6-J588_Disc5/15_03_28/BehavCam_2/"
behavcam_metadata = read_miniscope_config(folder_path=behavcam_folder_path)
# Create the Miniscope device with the behavioral camera metadata and add it to NWB
add_miniscope_device(nwbfile=nwbfile, device_metadata=behavcam_metadata)
# Loading the timestamps
behavcam_timestamps = get_timestamps(folder_path=folder_path, file_pattern="BehavCam*/timeStamps.csv")
# Load the starting frames of the video files
# Note this function requires to have `cv2` installed
starting_frames = get_starting_frames(folder_path=folder_path, video_file_pattern="*/BehavCam*/*.avi")
# Legacy usage for Miniscope V3
ms_files = natsorted(glob(os.path.join(folder_path, 'msCam*.avi')))
nwbfile.add_acquisition(
ImageSeries(
name='OnePhotonSeries', # this is not recommended since pynwb has native OnePhotonSeries
format='external',
external_file=[os.path.split(x)[1] for x in ms_files],
timestamps=get_timestamps(folder_path=folder_path, cam_num=1),
starting_frame=get_starting_frames(folder_path=folder_path, video_file_pattern="msCam*.avi"),
)
)
behav_files = natsorted(glob(os.path.join(folder_path, 'behavCam*.avi')))
nwbfile.add_acquisition(
ImageSeries(
name='behaviorCam',
format='external',
external_file=[os.path.split(x)[1] for x in behav_files],
timestamps=get_timestamps(folder_path=folder_path, cam_num=2),
starting_frame=get_starting_frames(folder_path=folder_path, video_file_pattern="behavCam*.avi"),
)
)
annotations = read_notes(folder_path=folder_path)
if annotations is not None:
nwbfile.add_acquisition(annotations)
save_path = os.path.join(folder_path, "test_out.nwb")
with NWBHDF5IO(save_path, "w") as io:
io.write(nwbfile)
# test read
with NWBHDF5IO(save_path, "r") as io:
nwbfile_in = io.read()
MATLAB:
Installation
git clone https://github.com/bendichter/ndx-miniscope.git
generateExtension('path/to/ndx-miniscope/spec');
Usage
under construction...
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ndx-miniscope-0.5.1.tar.gz
.
File metadata
- Download URL: ndx-miniscope-0.5.1.tar.gz
- Upload date:
- Size: 19.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5136d4ffdbe2c2456f7f9595aa4ceef098b280b9e4b52c5efc51713376f1d7f5 |
|
MD5 | f0d135b61496518b70791faf2dda48ff |
|
BLAKE2b-256 | fa25338cb8fa6f444e5a15035fa845a9be0f40e7b9f46085b7d7ff3db39200f6 |
File details
Details for the file ndx_miniscope-0.5.1-py3-none-any.whl
.
File metadata
- Download URL: ndx_miniscope-0.5.1-py3-none-any.whl
- Upload date:
- Size: 11.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 00b82fa2501e5ba100893abfb26c48e02bc23866258c9462c61eb6f1fdf821fa |
|
MD5 | e2ef4956a5627edfea7ec6fc1c7d72b1 |
|
BLAKE2b-256 | 627a8ee433b95653c43bee59f7d98e2796aedfa502736a17297f28e3de7a0fbb |