Skip to main content

Python client for NebulaGraph V3.4

Project description

nebula-python

This repository holds the official Python API for NebulaGraph.

pdm-managed pypi-version python-version

Before you start

Before you start, please read this section to choose the right branch for you. The compatibility between the API and NebulaGraph service can be found in How to choose nebula-python. The current master branch is compatible with NebulaGraph 3.x.

The directory structure

|--nebula-python
    |
    |-- nebula3                               // client code
    |   |-- fbthrift                          // the fbthrift lib code
    |   |-- common
    |   |-- data
    |   |-- graph
    |   |-- meta
    |   |-- net                               // the net code for graph client
    |   |-- storage
    |   |-- Config.py                         // the pool config
    |   |__ Exception.py                      // the define exception
    |
    |-- examples
    |   |-- GraphClientMultiThreadExample.py  // the multi thread example
    |   |-- GraphClientSimpleExample.py       // the simple example
    |   |__ ScanVertexEdgeExample.py
    |
    |-- tests                                 // the test code
    |
    |-- setup.py                              // used to install or package
    |
    |__ README.md                             // the introduction of nebula3-python

How to get nebula3-python

Option one: install with pip

# for v3.x
pip install nebula3-python==$version
# for v2.x
pip install nebula2-python==$version

Option two: install from the source code

  • Clone from GitHub
git clone https://github.com/vesoft-inc/nebula-python.git
cd nebula-python
  • Install from source

For python version >= 3.7.0

pip install .

For python version >= 3.6.2, < 3.7.0

python3 setup.py install

Quick example to use graph-client to connect graphd

from nebula3.gclient.net import ConnectionPool
from nebula3.Config import Config

# define a config
config = Config()
config.max_connection_pool_size = 10
# init connection pool
connection_pool = ConnectionPool()
# if the given servers are ok, return true, else return false
ok = connection_pool.init([('127.0.0.1', 9669)], config)

# option 1 control the connection release yourself
# get session from the pool
session = connection_pool.get_session('root', 'nebula')

# select space
session.execute('USE nba')

# show tags
result = session.execute('SHOW TAGS')
print(result)

# release session
session.release()

# option 2 with session_context, session will be released automatically
with connection_pool.session_context('root', 'nebula') as session:
    session.execute('USE nba')
    result = session.execute('SHOW TAGS')
    print(result)

# close the pool
connection_pool.close()

Example of using session pool

There are some limitations while using the session pool:

1. There MUST be an existing space in the DB before initializing the session pool.
2. Each session pool is corresponding to a single USER and a single Space. This is to ensure that the user's access control is consistent. i.g. The same user may have different access privileges in different spaces. If you need to run queries in different spaces, you may have multiple session pools.
3. Every time when sessinPool.execute() is called, the session will execute the query in the space set in the session pool config.
4. Commands that alter passwords or drop users should NOT be executed via session pool.

see /example/SessinPoolExample.py

Quick example to fetch result to dataframe

from nebula3.gclient.net import ConnectionPool
from nebula3.Config import Config
import pandas as pd
from typing import Dict
from nebula3.data.ResultSet import ResultSet

def result_to_df(result: ResultSet) -> pd.DataFrame:
    """
    build list for each column, and transform to dataframe
    """
    assert result.is_succeeded()
    columns = result.keys()
    d: Dict[str, list] = {}
    for col_num in range(result.col_size()):
        col_name = columns[col_num]
        col_list = result.column_values(col_name)
        d[col_name] = [x.cast() for x in col_list]
    return pd.DataFrame.from_dict(d, orient='columns')

# define a config
config = Config()

# init connection pool
connection_pool = ConnectionPool()

# if the given servers are ok, return true, else return false
ok = connection_pool.init([('127.0.0.1', 9669)], config)

# option 2 with session_context, session will be released automatically
with connection_pool.session_context('root', 'nebula') as session:
    session.execute('USE <your graph space>')
    result = session.execute('<your query>')
    df = result_to_df(result)
    print(df)

# close the pool
connection_pool.close()

Quick example to use storage-client to scan vertex and edge

You should make sure the scan client can connect to the address of storage which see from SHOW HOSTS

from nebula3.mclient import MetaCache, HostAddr
from nebula3.sclient.GraphStorageClient import GraphStorageClient

# the metad servers's address
meta_cache = MetaCache([('172.28.1.1', 9559),
                        ('172.28.1.2', 9559),
                        ('172.28.1.3', 9559)],
                       50000)

# option 1 metad usually discover the storage address automatically
graph_storage_client = GraphStorageClient(meta_cache)

# option 2 manually specify the storage address
storage_addrs = [HostAddr(host='172.28.1.4', port=9779),
                 HostAddr(host='172.28.1.5', port=9779),
                 HostAddr(host='172.28.1.6', port=9779)]
graph_storage_client = GraphStorageClient(meta_cache, storage_addrs)

resp = graph_storage_client.scan_vertex(
        space_name='ScanSpace',
        tag_name='person')
while resp.has_next():
    result = resp.next()
    for vertex_data in result:
        print(vertex_data)

resp = graph_storage_client.scan_edge(
    space_name='ScanSpace',
    edge_name='friend')
while resp.has_next():
    result = resp.next()
    for edge_data in result:
        print(edge_data)

How to choose nebula-python

Nebula-Python Version NebulaGraph Version
1.0 1.x
2.0.0 2.0.0/2.0.1
2.5.0 2.5.0
2.6.0 2.6.0/2.6.1
3.0.0 3.0.0
3.1.0 3.1.0
3.3.0 3.3.0
3.4.0 >=3.4.0
3.5.0 >=3.4.0
master master

How to contribute to nebula-python

Fork this repo, then clone it locally (be sure to replace the {username} in the repo URL below with your GitHub username):

git clone https://github.com/{username}/nebula-python.git
cd nebula-python

We use PMD to manage the package, install it first:

pipx install pdm

Visit the PDM documentation for alternative installation methods.

Install the package and all dev dependencies:

pdm install

Make sure the Nebula server in running, then run the tests with pytest:

pdm test

Using the default formatter with black.

Please run pdm fmt to format python code before submitting.

See How to contribute for the general process of contributing to Nebula projects.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nebula3_python-3.5.0.tar.gz (3.1 MB view details)

Uploaded Source

Built Distribution

nebula3_python-3.5.0-py3-none-any.whl (326.3 kB view details)

Uploaded Python 3

File details

Details for the file nebula3_python-3.5.0.tar.gz.

File metadata

  • Download URL: nebula3_python-3.5.0.tar.gz
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.12.2 CPython/3.8.10

File hashes

Hashes for nebula3_python-3.5.0.tar.gz
Algorithm Hash digest
SHA256 ea079a7101584de3c1d9104a4c2ae36f6c6f154314df274d7753b03ebd2f467e
MD5 a2fb2c97bc542971db9ae5c069a028ec
BLAKE2b-256 7f182d06285f2e63fb2eae59fa421db8f96bfc6f229829b12e120a70e9998dd3

See more details on using hashes here.

Provenance

File details

Details for the file nebula3_python-3.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for nebula3_python-3.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c98c3ad4c243a7a46f55d044826a801408dffe36739bbcc7af078bed311c401a
MD5 d39cca3ada2059277573ad016f04e3e9
BLAKE2b-256 179c46735c3f5e3dd62e8d568cd95114cc940896209b1eac75d16b5865b84f3f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page