Skip to main content

Python wrapper for the NOAA Environmental Modeling System

Project description

NEMSpy

tests build version oitnb license

NEMSpy generates configuration files (nems.configure, config.rc, model_configure, atm_namelist.rc) for coupled modeling applications run with a compiled NEMS binary (not included).

NEMS implements the National Unified Operational Prediction Capability (NUOPC), and configuration files built for NEMS will also work for most NUOPC applications.

Usage:

from datetime import datetime, timedelta

from nemspy import ModelingSystem
from nemspy.model import ADCIRC, AtmosphericMesh, NationalWaterModel, WaveMesh

# model run time
start_time = datetime(2020, 6, 1)
duration = timedelta(days=1)

# returning interval of main run sequence
interval = timedelta(hours=1)

# directory to which configuration files should be written
output_directory = '~/nems_configuration/'

# model entries
atmospheric_mesh = AtmosphericMesh('~/wind_atm_fin_ch_time_vec.nc')
wave_mesh = WaveMesh('~/ww3.Constant.20151214_sxy_ike_date.nc')
ocean_model = ADCIRC(processors=11, verbose=True, DumpFields=False)
hydrological_model = NationalWaterModel(processors=769, DebugFlag=0)

# instantiate model system with a specified order of execution
nems = ModelingSystem(
    start_time,
    duration,
    interval,
    atm=atmospheric_mesh,
    wav=wave_mesh,
    ocn=ocean_model,
    hyd=hydrological_model,
)

# form connections between models
nems.connect('WAV', 'OCN')
nems.connect('ATM', 'HYD')
nems.connect('WAV', 'HYD')

# form mediations between models with custom functions
nems.mediate('ATM', 'OCN', ['MedPhase_atm_ocn_flux'])
nems.mediate('HYD', None)
nems.mediate(None, 'OCN', ['MedPhase_prep_ocn'], processors=2)

# define execution order
nems.sequence = [
    'MED -> OCN',
    'ATM',
    'ATM -> MED -> OCN',
    'WAV -> OCN',
    'OCN',
    'WAV',
    'ATM -> HYD',
    'WAV -> HYD',
    'HYD',
    'HYD -> MED',
]

# write configuration files to the given directory
nems.write(output_directory, overwrite=True)

Output:

nems.configure
#############################################
####  NEMS Run-Time Configuration File  #####
#############################################

# EARTH #
EARTH_component_list: ATM WAV OCN HYD MED
EARTH_attributes::
  Verbosity = min
::

# MED #
MED_model:                      implicit
MED_petlist_bounds:             0 1
MED_attributes::
  Verbosity = min
::

# ATM #
ATM_model:                      atmesh
ATM_petlist_bounds:             2 2
ATM_attributes::
  Verbosity = min
::

# OCN #
OCN_model:                      adcirc
OCN_petlist_bounds:             2 12
OCN_attributes::
  Verbosity = max
  DumpFields = false
::

# WAV #
WAV_model:                      ww3data
WAV_petlist_bounds:             13 13
WAV_attributes::
  Verbosity = min
::

# HYD #
HYD_model:                      nwm
HYD_petlist_bounds:             14 782
HYD_attributes::
  Verbosity = min
  DebugFlag = 0
::

# Run Sequence #
runSeq::
  @3600

    MED MedPhase_prep_ocn
    MED -> OCN   :remapMethod=redist
    ATM
    ATM -> MED   :remapMethod=redist
    MED MedPhase_atm_ocn_flux
    MED -> OCN   :remapMethod=redist
    WAV -> OCN   :remapMethod=redist
    OCN
    WAV
    ATM -> HYD   :remapMethod=redist
    WAV -> HYD   :remapMethod=redist
    HYD
    HYD -> MED   :remapMethod=redist
  @
::
config.rc
 atm_dir: ~
 atm_nam: wind_atm_fin_ch_time_vec.nc
 wav_dir: ~
 wav_nam: ww3.Constant.20151214_sxy_ike_date.nc
model_configure
core: gfs
print_esmf:     .true.

nhours_dfini=0

#nam_atm +++++++++++++++++++++++++++
nlunit:                  35
deltim:                  900.0
fhrot:                   0
namelist:                atm_namelist
total_member:            1
grib_input:              0
PE_MEMBER01:             784
PE_MEMBER02
PE_MEMBER03
PE_MEMBER04
PE_MEMBER05
PE_MEMBER06
PE_MEMBER07
PE_MEMBER08
PE_MEMBER09
PE_MEMBER10
PE_MEMBER11
PE_MEMBER12
PE_MEMBER13
PE_MEMBER14
PE_MEMBER15
PE_MEMBER16
PE_MEMBER17
PE_MEMBER18
PE_MEMBER19:
PE_MEMBER20:
PE_MEMBER21:

# For stochastic perturbed runs -  added by Dhou and Wyang
--------------------------------------------------------
#  ENS_SPS, logical control for application of stochastic perturbation scheme
#  HH_START, start hour of forecast, and modified ADVANCECOUNT_SETUP
#  HH_INCREASE and HH_FINAL are fcst hour increment and end hour of forecast
#  ADVANCECOUNT_SETUP is an integer indicating the number of time steps between integration_start and the time when model state is saved for the _ini of the GEFS_Coupling, currently is 0h.

HH_INCREASE:             600
HH_FINAL:                600
HH_START:                0
ADVANCECOUNT_SETUP:      0

ENS_SPS:                 .false.
HOUTASPS:                10000

#ESMF_State_Namelist +++++++++++++++

RUN_CONTINUE:            .false.

#
dt_int:                  900
dt_num:                  0
dt_den:                  1
start_year:              2020
start_month:             6
start_day:               1
start_hour:              0
start_minute:            0
start_second:            0
nhours_fcst:             24
restart:                 .false.
nhours_fcst1:            24
im:                      192
jm:                      94
global:                  .true.
nhours_dfini:            0
adiabatic:               .false.
lsoil:                   4
passive_tracer:          .true.
dfilevs:                 64
ldfiflto:                .true.
num_tracers:             3
ldfi_grd:                .false.
lwrtgrdcmp:              .false.
nemsio_in:               .false.


#jwstart added quilt
###############################
#### Specify the I/O tasks ####
###############################


quilting:                .false.   #For asynchronous quilting/history writes
read_groups:             0
read_tasks_per_group:    0
write_groups:            1
write_tasks_per_group:   3

num_file:                3                   #
filename_base:           'SIG.F' 'SFC.F' 'FLX.F'
file_io_form:            'bin4' 'bin4' 'bin4'
file_io:                 'DEFERRED' 'DEFERRED' 'DEFERRED' 'DEFERRED'  #
write_dopost:            .false.          # True--> run do on quilt
post_gribversion:        grib1      # True--> grib version for post output files
gocart_aer2post:         .false.
write_nemsioflag:        .TRUE.       # True--> Write nemsio run history files
nfhout:                  3
nfhout_hf:               1
nfhmax_hf:               0
nsout:                   0

io_recl:                 100
io_position:             ' '
io_action:               'WRITE'
io_delim:                ' '
io_pad:                  ' '

#jwend

Related:

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nemspy-0.3.2.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

nemspy-0.3.2-py3-none-any.whl (17.4 kB view details)

Uploaded Python 3

File details

Details for the file nemspy-0.3.2.tar.gz.

File metadata

  • Download URL: nemspy-0.3.2.tar.gz
  • Upload date:
  • Size: 16.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for nemspy-0.3.2.tar.gz
Algorithm Hash digest
SHA256 702f375f7bef19308103457b503fac86e8c49d030566f4194883318549de2a9b
MD5 aa75bae2c7582aeeab624a62ae9cae25
BLAKE2b-256 fb93e33f41618953a92628132f29bdf2ecd6ad3aa1ac6f0a798fd52bfee94a7c

See more details on using hashes here.

Provenance

File details

Details for the file nemspy-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: nemspy-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 17.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for nemspy-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3f5a584d85d4560f36f259355837eb804600b7f855b337e11b8ce8151df3ed79
MD5 f2bd8cd5a9a34056aa5e85ee2170d15c
BLAKE2b-256 01f9411c48c126f0ffe70613618293b85c630152a49fc0363b41e4c714e05f36

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page