Skip to main content

A collection of tools for neural compression enthusiasts

Project description

NeuralCompression

LICENSE Build and Test

What's New

About

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video compression models, and metrics for image and video evaluation.

NeuralCompression is alpha software. The project is under active development. The API will change as we make releases, potentially breaking backwards compatibility.

Installation

NeuralCompression is a project currently under development. You can install the repository in development mode.

PyPI Installation

First, install PyTorch according to the directions from the PyTorch website. Then, you should be able to run

pip install neuralcompression

to get the latest version from PyPI.

Development Installation

First, clone the repository and navigate to the NeuralCompression root directory and install the package in development mode by running:

pip install --editable ".[tests]"

If you are not interested in matching the test environment, then you can just apply pip install -e ..

Repository Structure

We use a 2-tier repository structure. The neuralcompression package contains a core set of tools for doing neural compression research. Code committed to the core package requires stricter linting, high code quality, and rigorous review. The projects folder contains code for reproducing papers and training baselines. Code in this folder is not linted aggressively, we don't enforce type annotations, and it's okay to omit unit tests.

The 2-tier structure enables rapid iteration and reproduction via code in projects that is built on a backbone of high-quality code in neuralcompression.

neuralcompression

  • neuralcompression - base package
    • data - PyTorch data loaders for various data sets
    • distributions - extensions of probability models for compression
    • functional - methods for image warping, information cost, flop counting, etc.
    • layers - building blocks for compression models
    • metrics - torchmetrics classes for assessing model performance
    • models - complete compression models
    • optim - useful optimization utilities

projects

Tutorial Notebooks

This repository also features interactive notebooks detailing different parts of the package, which can be found in the tutorials directory. Existing tutorials are:

  • Walkthrough of the neuralcompression flop counter (view on Colab).
  • Using neuralcompression.metrics and torchmetrics to calculate rate-distortion curves (view on Colab).

Contributions

Please read our CONTRIBUTING guide and our CODE_OF_CONDUCT prior to submitting a pull request.

We test all pull requests. We rely on this for reviews, so please make sure any new code is tested. Tests for neuralcompression go in the tests folder in the root of the repository. Tests for individual projects go in those projects' own tests folder.

We use black for formatting, isort for import sorting, flake8 for linting, and mypy for type checking.

License

NeuralCompression is MIT licensed, as found in the LICENSE file.

Model weights released with NeuralCompression are CC-BY-NC 4.0 licensed, as found in the WEIGHTS_LICENSE file.

Some of the code may from other repositories and include other licenses. Please read all code files carefully for details.

Cite

If you use code for a paper reimplementation. If you would like to also cite the repository, you can use:

@misc{muckley2021neuralcompression,
    author={Matthew Muckley and Jordan Juravsky and Daniel Severo and Mannat Singh and Quentin Duval and Karen Ullrich},
    title={NeuralCompression},
    howpublished={\url{https://github.com/facebookresearch/NeuralCompression}},
    year={2021}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuralcompression-0.3.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

neuralcompression-0.3.1-py3-none-any.whl (107.8 kB view details)

Uploaded Python 3

File details

Details for the file neuralcompression-0.3.1.tar.gz.

File metadata

  • Download URL: neuralcompression-0.3.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for neuralcompression-0.3.1.tar.gz
Algorithm Hash digest
SHA256 447ba7e12dcf253fcebf44dd61dfd8451c06dd3a2884d42d096e9bddb7418535
MD5 f627f6e43f87f6275667bb5641d25151
BLAKE2b-256 26e95751cea9c26972e7f339891bd73b975ac10c1753f0c0e1a43c101bac159c

See more details on using hashes here.

File details

Details for the file neuralcompression-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for neuralcompression-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 830c97f711723c6e30b8a87f1a39d7d6c921928fb263ce50d989741d67f7e3ed
MD5 4d833138487396608afc5a4c8fc12804
BLAKE2b-256 d5fd96699c87f8239b8d59a18ba04d1a99b525928ebf7d341bf15b0c4a524d17

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page