Skip to main content

A Python toolbox for performing gradient-free optimization

Project description

CircleCI

Nevergrad - A gradient-free optimization platform

Nevergrad

nevergrad is a Python 3.6+ library. It can be installed with:

pip install nevergrad

More installation options, including windows installation, and complete instructions are available in the "Getting started" section of the documentation.

You can join Nevergrad users Facebook group here.

Minimizing a function using an optimizer (here NGO) is straightforward:

import nevergrad as ng

def square(x):
    return sum((x - .5)**2)

optimizer = ng.optimizers.NGO(parametrization=2, budget=100)
recommendation = optimizer.minimize(square)
print(recommendation.value)  # recommended value
>>> [0.49971112 0.5002944]

nevergrad can also support bounded continuous variables as well as discrete variables, and mixture of those. To do this, one can specify the input space:

import nevergrad as ng

def fake_training(learning_rate: float, batch_size: int, architecture: str) -> float:
    # optimal for learning_rate=0.2, batch_size=4, architecture="conv"
    return (learning_rate - 0.2)**2 + (batch_size - 4)**2 + (0 if architecture == "conv" else 10)

# Instrumentation class is used for functions with multiple inputs
# (positional and/or keywords)
parametrization = ng.p.Instrumentation(
    # a log-distributed scalar between 0.001 and 1.0
    learning_rate=ng.p.Log(lower=0.001, upper=1.0),
    # an integer from 1 to 12
    batch_size=ng.p.Scalar(lower=1, upper=12).set_integer_casting(),
    # either "conv" or "fc"
    architecture=ng.p.Choice(["conv", "fc"])
)

optimizer = ng.optimizers.NGO(parametrization=parametrization, budget=100)
recommendation = optimizer.minimize(fake_training)

# show the recommended keyword arguments of the function
print(recommendation.kwargs)
>>> {'learning_rate': 0.1998, 'batch_size': 4, 'architecture': 'conv'}

Learn more on parametrization in the documentation!

Example of optimization

Convergence of a population of points to the minima with two-points DE.

Documentation

Check out our documentation! It's still a work in progress, don't hesitate to submit issues and/or PR to update it and make it clearer!

Citing

@misc{nevergrad,
    author = {J. Rapin and O. Teytaud},
    title = {{Nevergrad - A gradient-free optimization platform}},
    year = {2018},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://GitHub.com/FacebookResearch/Nevergrad}},
}

License

nevergrad is released under the MIT license. See LICENSE for additional details about it. See also our Terms of Use and Privacy Policy.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nevergrad-0.4.2.tar.gz (211.5 kB view details)

Uploaded Source

Built Distribution

nevergrad-0.4.2-py3-none-any.whl (279.7 kB view details)

Uploaded Python 3

File details

Details for the file nevergrad-0.4.2.tar.gz.

File metadata

  • Download URL: nevergrad-0.4.2.tar.gz
  • Upload date:
  • Size: 211.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.11

File hashes

Hashes for nevergrad-0.4.2.tar.gz
Algorithm Hash digest
SHA256 a33128dba1e4ac87a1f62d15232f9c28f85ae33b0c12317e483f078c82fa66c3
MD5 7c2762e1daf7bc985aa1fa049c8099e6
BLAKE2b-256 ceb94e93565dfa40b54c2501d81d98f16e3a43de9bf6d266c07c086b754b27ac

See more details on using hashes here.

Provenance

File details

Details for the file nevergrad-0.4.2-py3-none-any.whl.

File metadata

  • Download URL: nevergrad-0.4.2-py3-none-any.whl
  • Upload date:
  • Size: 279.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.11

File hashes

Hashes for nevergrad-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 969fafe800c5ae867aec310de3eca148265aa7a07162369ff63fa79a4f73a0bb
MD5 9f93720200112af53bfae3ae97b887f9
BLAKE2b-256 230a404f82e73454a0e7184e3bb6a2cf5ba5f7c045335ed106cbfc2226decff4

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page