Skip to main content

NebulaGraph AI Suite

Project description

NebulaGraph AI Suite(ng_ai)

NebulaGraph AI Suite with 4 line code to run Graph Algo on NebulaGraph

License PyPI version pdm-managed Tests Python 3.9


Documentation: https://github.com/wey-gu/nebulagraph-ai#documentation

Source Code: https://github.com/wey-gu/nebulagraph-ai


NebulaGraph AI Suite for Python (ng_ai) is a powerful Python library that offers APIs for data scientists to effectively read, write, analyze, and compute data in NebulaGraph.

With the support of a single-machine engine(NetworkX), or distributed computing environment using Spark, we could perform Graph Analysis and Algorithms on top of NebulaGraph in less than 10 lines of code, in unified and intuitive API.

Quick Start in 5 Minutes

Option 1: Try on your Desktop. Go with NebulaGraph Docker Extension!

Option 2: On Linux Server? Go with Nebula-Up ๐Ÿ‘‡๐Ÿป

Installation

pip install ng_ai

Usage

Call from nGQL

See more details in the docs

RETURN ng_ai("pagerank", ["follow"], ["degree"], "spark",
    {space: "basketballplayer", max_iter: 10}, {write_mode: "insert"})

Spark Engine Examples

See also: examples/spark_engine.ipynb

Run Algorithm on top of NebulaGraph:

Note, there is also a query mode, refer to examples or docs for more details.

from ng_ai import NebulaReader

# read data with spark engine, scan mode
reader = NebulaReader(engine="spark")
reader.scan(edge="follow", props="degree")
df = reader.read()

# run pagerank algorithm
pr_result = df.algo.pagerank(reset_prob=0.15, max_iter=10)

Write back to NebulaGraph:

from ng_ai import NebulaWriter
from ng_ai.config import NebulaGraphConfig

config = NebulaGraphConfig()

properties = {"louvain": "cluster_id"}

writer = NebulaWriter(
    data=df_result, sink="nebulagraph_vertex", config=config, engine="spark")
writer.set_options(
    tag="louvain", vid_field="_id", properties=properties,
    batch_size=256, write_mode="insert",)
writer.write()

Then we could query the result in NebulaGraph:

MATCH (v:louvain)
RETURN id(v), v.louvain.cluster_id LIMIT 10;

NebulaGraph Engine Examples

Basically the same as Spark Engine, but with engine="nebula", refer to examples or docs for more details.

- reader = NebulaReader(engine="spark")
+ reader = NebulaReader(engine="nebula")

Documentation

Environment Setup

API Reference

How it works

ng_ai is a unified abstraction layer for different engines, the current implementation is based on Spark, NetworkX, DGL, and NebulaGraph, but it's easy to extend to other engines like Flink, GraphScope, PyG, etc.

          โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
          โ”‚   Spark Cluster                                   โ”‚
          โ”‚    .โ”€โ”€โ”€โ”€โ”€.    .โ”€โ”€โ”€โ”€โ”€.    .โ”€โ”€โ”€โ”€โ”€.    .โ”€โ”€โ”€โ”€โ”€.       โ”‚
          โ”‚   ;       :  ;       :  ;       :  ;       :      โ”‚
       โ”Œโ”€โ–ถโ”‚   :       ;  :       ;  :       ;  :       ;      โ”‚
       โ”‚  โ”‚    โ•ฒ     โ•ฑ    โ•ฒ     โ•ฑ    โ•ฒ     โ•ฑ    โ•ฒ     โ•ฑ       โ”‚
       โ”‚  โ”‚     `โ”€โ”€โ”€'      `โ”€โ”€โ”€'      `โ”€โ”€โ”€'      `โ”€โ”€โ”€'        โ”‚
  Algo Spark                                                  โ”‚
    Engineโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
       โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
       โ””โ”€โ”€โ”ค                                                    โ”‚          โ”‚
          โ”‚   NebulaGraph AI Suite(ngai)                       โ”‚ ngai-api โ”‚โ—€โ”€โ”
          โ”‚                                                    โ”‚          โ”‚  โ”‚
          โ”‚                                                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค  โ”‚
          โ”‚     โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”Œโ”€โ”€โ”€โ”€โ”€โ”            โ”‚  โ”‚
          โ”‚     โ”‚ Reader โ”‚    โ”‚ Algo โ”‚    โ”‚ Writer โ”‚   โ”‚ GNN โ”‚            โ”‚  โ”‚
 โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ถโ”‚     โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ””โ”€โ”€โ”€โ”€โ”€โ”˜            โ”‚  โ”‚
 โ”‚        โ”‚          โ”‚            โ”‚            โ”‚          โ”‚               โ”‚  โ”‚
 โ”‚        โ”‚          โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”        โ”‚  โ”‚
 โ”‚        โ”‚          โ–ผ                โ–ผ              โ–ผ           โ–ผ        โ”‚  โ”‚
 โ”‚        โ”‚   โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”‚  โ”‚
 โ”‚     โ”Œโ”€โ”€โ”ค   โ”‚ SparkEngine โ”‚ โ”‚ NebulaEngine โ”‚ โ”‚ NetworkX โ”‚โ”‚ DGLEngineโ”‚   โ”‚  โ”‚
 โ”‚     โ”‚  โ”‚   โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ”‚  โ”‚
 โ”‚     โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
 โ”‚     โ”‚             โ”‚        Spark                                          โ”‚
 โ”‚     โ”‚             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€Reader โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”                           โ”‚
 โ”‚  Spark                   Query Mode           โ”‚                           โ”‚
 โ”‚  Reader                                       โ”‚                           โ”‚
 โ”‚Scan Mode                                      โ–ผ                      โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
 โ”‚     โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค ngai-udfโ”‚โ—€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
 โ”‚     โ”‚  โ”‚                                                   โ”‚         โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค              โ”‚
 โ”‚     โ”‚  โ”‚  NebulaGraph Graph Engine         Nebula-GraphD   โ”‚   ngai-GraphD     โ”‚              โ”‚
 โ”‚     โ”‚  โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜              โ”‚
 โ”‚     โ”‚  โ”‚                              โ”‚                    โ”‚                                  โ”‚
 โ”‚     โ”‚  โ”‚  NebulaGraph Storage Engine  โ”‚                    โ”‚                                  โ”‚
 โ”‚     โ”‚  โ”‚                              โ”‚                    โ”‚                                  โ”‚
 โ”‚     โ””โ”€โ–ถโ”‚  Nebula-StorageD             โ”‚    Nebula-Metad    โ”‚                                  โ”‚
 โ”‚        โ”‚                              โ”‚                    โ”‚                                  โ”‚
 โ”‚        โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                                  โ”‚
 โ”‚                                                                                               โ”‚
 โ”‚    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
 โ”‚    โ”‚ RETURN ng_ai("pagerank", ["follow"], ["degree"], "spark", {space:"basketballplayer"}) โ”‚โ”€โ”€โ”˜
 โ”‚    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
 โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
 โ”‚  โ”‚ from ng_ai import NebulaReader                              โ”‚
 โ”‚  โ”‚                                                             โ”‚
 โ”‚  โ”‚ # read data with spark engine, scan mode                    โ”‚
 โ”‚  โ”‚ reader = NebulaReader(engine="spark")                       โ”‚
 โ”‚  โ”‚ reader.scan(edge="follow", props="degree")                  โ”‚
 โ””โ”€โ”€โ”‚ df = reader.read()                                          โ”‚
    โ”‚                                                             โ”‚
    โ”‚ # run pagerank algorithm                                    โ”‚
    โ”‚ pr_result = df.algo.pagerank(reset_prob=0.15, max_iter=10)  โ”‚
    โ”‚                                                             โ”‚
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  

Spark Engine Prerequisites

NebulaGraph Engine Prerequisites

Contributing

See HACKING.md for details.

License

This project is licensed under the terms of the Apache License 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ng_ai-0.2.10.1-py3-none-any.whl (23.9 kB view details)

Uploaded Python 3

File details

Details for the file ng_ai-0.2.10.1-py3-none-any.whl.

File metadata

  • Download URL: ng_ai-0.2.10.1-py3-none-any.whl
  • Upload date:
  • Size: 23.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.4.9 CPython/3.11.2

File hashes

Hashes for ng_ai-0.2.10.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a8caa3062740f2bbd7ae234c3d6f6d708d21ece0a9fa1f2d4e07c2e0999a4b13
MD5 a062dc477d7ed103b52a7e6121d241eb
BLAKE2b-256 f14ce582d822e0c6c69d558a9a797d7fd8f6bcbf367ebe1591b89dc32a60bdae

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page