Skip to main content

Expandable and scalable OCR pipeline

Project description

Overview

Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable collections of digitized texts.

It offers the following functionality:

As it is designed to use a common storage medium on network attached storage and the [celery](http://celeryproject.org) distributed task queue it scales nicely to multi-machine clusters.

Build

To build Nidaba run

` $ pip install . `

in the root directory or install using pypi:

` $ pip install nibada `

Some useful tasks have external dependencies. A good start is:

` # apt-get install tesseract-ocr leptonica-progs ``

Tests

Per default no dictionaries and OCR models necessary to runs the tests are installed. To download the necessary files run:

` $ python setup.py download `

` $ python setup.py test `

Tests for modules that call external programs, at the time only tesseract and ocropus, will be skipped if these aren’t installed.

Running

First edit (the installed) nidaba.yaml and celery.yaml to fit your needs. Have a look at the [docs](https:///mittagessen.github.io/nidaba) if you haven’t set up a celery-based application before.

Then start up the celery daemon with something like:

` $ celery -A nidaba worker `

Next jobs can be added to the pipeline using the nidaba executable:

` $ nidaba batch --binarize "sauvola:whsize=10;whsize=20;whsize=30;whsize=40,factor=0.6" --ocr tesseract:eng -- ./input.tiff Preparing filestore....done. Building batch...done. 25d79a54-9d4a-4939-acb6-8e168d6dbc7c `

Using the return code the current state of the job can be retrieved:

` $ nidaba status 25d79a54-9d4a-4939-acb6-8e168d6dbc7c PENDING `

When the job has been processed the status command will return a list of paths containing the final output:

` $ nidaba status 25d79a54-9d4a-4939-acb6-8e168d6dbc7c SUCCESS input.tiff -> /home/mittagessen/OCR/97150c41-82a9-4935-8063-9295a2eb2a7f/input_img.rgb_to_gray_binarize.sauvola_10_0.35_ocr.tesseract_eng.tiff.hocr input.tiff -> /home/mittagessen/OCR/97150c41-82a9-4935-8063-9295a2eb2a7f/input_img.rgb_to_gray_binarize.sauvola_20_0.35_ocr.tesseract_eng.tiff.hocr input.tiff -> /home/mittagessen/OCR/97150c41-82a9-4935-8063-9295a2eb2a7f/input_img.rgb_to_gray_binarize.sauvola_30_0.35_ocr.tesseract_eng.tiff.hocr input.tiff -> /home/mittagessen/OCR/97150c41-82a9-4935-8063-9295a2eb2a7f/input_img.rgb_to_gray_binarize.sauvola_40_0.6_ocr.tesseract_eng.tiff.hocr `

Documentation

Want to learn more? [Read the Docs](https:///openphilology.github.io/nidaba/)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nidaba-0.3.4.tar.gz (60.7 kB view details)

Uploaded Source

Built Distribution

nidaba-0.3.4-py2-none-any.whl (53.8 kB view details)

Uploaded Python 2

File details

Details for the file nidaba-0.3.4.tar.gz.

File metadata

  • Download URL: nidaba-0.3.4.tar.gz
  • Upload date:
  • Size: 60.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nidaba-0.3.4.tar.gz
Algorithm Hash digest
SHA256 a0913bdb6aa2150406a251e968ac98d47920efc4aa72b63ea408a3eea033f5fb
MD5 ff8ca58f0d3dca400594e6bedd0dda5b
BLAKE2b-256 6c3dbca636efcab93b6b39a87c1043aebbf7f908bf3f6b1dec058727ce4a3178

See more details on using hashes here.

File details

Details for the file nidaba-0.3.4-py2-none-any.whl.

File metadata

File hashes

Hashes for nidaba-0.3.4-py2-none-any.whl
Algorithm Hash digest
SHA256 804377afde9168c05239f7bdd233dbf95ad18429ab1da3e5bdd4c46d32361cb4
MD5 f20b26b5d9909fec1352df702846a3a2
BLAKE2b-256 dc85f683f801e213e68e7fc30b5e8d028e82ac92de288495b99b4d9c741e4631

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page