Skip to main content

Expandable and scalable OCR pipeline

Project description

Overview

Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable collections of digitized texts.

It offers the following functionality:

As it is designed to use a common storage medium on network attached storage and the [celery](http://celeryproject.org) distributed task queue it scales nicely to multi-machine clusters.

Build

To build Nidaba run

` $ pip install . `

in the root directory or install using pypi:

` $ pip install nibada `

Some useful tasks have external dependencies. A good start is:

` # apt-get install tesseract-ocr-grc libtesseract3 libleptonica-dev ``

Tests

Per default no dictionaries and OCR models necessary to runs the tests are installed. To download the necessary files run:

` $ python setup.py download `

` $ python setup.py test `

Tests for modules that call external programs, at the time only tesseract and ocropus, will be skipped if these aren’t installed.

Running

First edit (the installed) nidaba.yaml and celery.yaml to fit your needs. Have a look at the [docs](https:///mittagessen.github.io/nidaba) if you haven’t set up a celery-based application before.

Then start up the celery daemon with something like:

` $ celery -A nidaba worker `

Next jobs can be added to the pipeline using the nidaba executable:

` $ nidaba batch --binarize "sauvola:whsize=10;whsize=20;whsize=30;whsize=40,factor=0.6" --ocr tesseract:eng -- ./input.tiff Preparing filestore....done. Building batch...done. 25d79a54-9d4a-4939-acb6-8e168d6dbc7c `

Using the return code the current state of the job can be retrieved:

` $ nidaba status 25d79a54-9d4a-4939-acb6-8e168d6dbc7c PENDING `

When the job has been processed the status command will return a list of paths containing the final output:

` $ nidaba status 25d79a54-9d4a-4939-acb6-8e168d6dbc7c SUCCESS input.tiff -> /home/mittagessen/OCR/97150c41-82a9-4935-8063-9295a2eb2a7f/input_img.rgb_to_gray_binarize.sauvola_10_0.35_ocr.tesseract_eng.tiff.hocr input.tiff -> /home/mittagessen/OCR/97150c41-82a9-4935-8063-9295a2eb2a7f/input_img.rgb_to_gray_binarize.sauvola_20_0.35_ocr.tesseract_eng.tiff.hocr input.tiff -> /home/mittagessen/OCR/97150c41-82a9-4935-8063-9295a2eb2a7f/input_img.rgb_to_gray_binarize.sauvola_30_0.35_ocr.tesseract_eng.tiff.hocr input.tiff -> /home/mittagessen/OCR/97150c41-82a9-4935-8063-9295a2eb2a7f/input_img.rgb_to_gray_binarize.sauvola_40_0.6_ocr.tesseract_eng.tiff.hocr `

Documentation

Want to learn more? [Read the Docs](https:///openphilology.github.io/nidaba/)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nidaba-0.3.6.tar.gz (61.2 kB view details)

Uploaded Source

Built Distribution

nidaba-0.3.6-py2-none-any.whl (40.8 kB view details)

Uploaded Python 2

File details

Details for the file nidaba-0.3.6.tar.gz.

File metadata

  • Download URL: nidaba-0.3.6.tar.gz
  • Upload date:
  • Size: 61.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nidaba-0.3.6.tar.gz
Algorithm Hash digest
SHA256 667d2cce2c7ce0a73ffec97aeb1761d2c9a2d715c2a2d580b237f8fe42a3c040
MD5 de43b2877e90f1bb8c071836cb59fa15
BLAKE2b-256 01630d0aa6710cc7c235c0f14f85f1c8e82348156a98a244ba78956b9406f225

See more details on using hashes here.

File details

Details for the file nidaba-0.3.6-py2-none-any.whl.

File metadata

File hashes

Hashes for nidaba-0.3.6-py2-none-any.whl
Algorithm Hash digest
SHA256 3394d7075619bc0d54b8de483783f1dff2783295534ac2a7ba580373867eb118
MD5 45fd27d051c980b50bf962cd965b9a13
BLAKE2b-256 5f8c881ece90a4e2a550571859422e33d4f7736690e9de032988a82c2f558d06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page