Skip to main content

Statistical learning for neuroimaging in Python

Project description

Build Status https://coveralls.io/repos/nilearn/nilearn/badge.svg?branch=master

nilearn

Nilearn is a Python module for fast and easy statistical learning on NeuroImaging data.

It leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

This work is made available by a community of people, amongst which the INRIA Parietal Project Team and the scikit-learn folks, in particular P. Gervais, A. Abraham, V. Michel, A. Gramfort, G. Varoquaux, F. Pedregosa, B. Thirion, M. Eickenberg, C. F. Gorgolewski, D. Bzdok, L. Estève and B. Cipollini.

Dependencies

The required dependencies to use the software are:

  • Python >= 2.6,

  • setuptools

  • Numpy >= 1.6.1

  • SciPy >= 0.9

  • Scikit-learn >= 0.12.1

  • Nibabel >= 1.1.0

If you are using nilearn plotting functionalities or running the examples, matplotlib >= 1.1.1 is required.

If you want to run the tests, you need nose >= 1.2.1 and coverage >= 3.6.

Install

First make sure you have installed all the dependencies listed above. Then you can install nilearn by running the following command in a command prompt:

pip install -U --user nilearn

More detailed instructions are available at http://nilearn.github.io/introduction.html#installation.

Development

Code

GIT

You can check the latest sources with the command:

git clone git://github.com/nilearn/nilearn

or if you have write privileges:

git clone git@github.com:nilearn/nilearn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nilearn-0.1.4.tar.gz (648.9 kB view details)

Uploaded Source

Built Distributions

nilearn-0.1.4-py2.py3-none-any.whl (694.8 kB view details)

Uploaded Python 2 Python 3

nilearn-0.1.4-py2.7.egg (962.2 kB view details)

Uploaded Source

nilearn-0.1.4-py2-none-any.whl (694.8 kB view details)

Uploaded Python 2

File details

Details for the file nilearn-0.1.4.tar.gz.

File metadata

  • Download URL: nilearn-0.1.4.tar.gz
  • Upload date:
  • Size: 648.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nilearn-0.1.4.tar.gz
Algorithm Hash digest
SHA256 28c53352b2c1e3fee525e5e2054d6ab6823524f40f40aa0150fa5aadf81ec183
MD5 91f91caea5d957d860356e763f39baba
BLAKE2b-256 f0b45c9f3bacc50f9ef2d5c84e953ff1a709f56ff47be008a18b5e389ad9f22c

See more details on using hashes here.

Provenance

File details

Details for the file nilearn-0.1.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for nilearn-0.1.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6153a7ac10daeb1bc286b63383586a5f7afa457a01e60a849813ed05cbd9c079
MD5 64f4440f14f8ff05124cec5075c92b05
BLAKE2b-256 6d1aa63385fbf74b7e3eabadeb640a920af786541474ef9b9a54f6ae1eba1428

See more details on using hashes here.

Provenance

File details

Details for the file nilearn-0.1.4-py2.7.egg.

File metadata

  • Download URL: nilearn-0.1.4-py2.7.egg
  • Upload date:
  • Size: 962.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nilearn-0.1.4-py2.7.egg
Algorithm Hash digest
SHA256 41fd866f100e051c80c3957cfca345d42dfc367d26d5c11f4ef0ee30e0a4b33b
MD5 221a11bede790c0eaa9b08e0515cd1ac
BLAKE2b-256 f20876fb226cf237f7ac8dd01577d75741110a4af9cfe39a4c078bc36d4cc67c

See more details on using hashes here.

Provenance

File details

Details for the file nilearn-0.1.4-py2-none-any.whl.

File metadata

File hashes

Hashes for nilearn-0.1.4-py2-none-any.whl
Algorithm Hash digest
SHA256 e7541a2dbb1b4ae2963e3b4dbe33039012fafb94b40969e8e6dc7ad457621b31
MD5 c13a8d5a5adce52b805d9b2f9ca5f06f
BLAKE2b-256 bd4baf0bd62b933929ab03a00112d14e09513c0c1c3d3e280df90fdbc6eb1abf

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page