Skip to main content

Statistical learning for neuroimaging in Python

Project description

Build Status https://coveralls.io/repos/nilearn/nilearn/badge.svg?branch=master

nilearn

Nilearn is a Python module for fast and easy statistical learning on NeuroImaging data.

It leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

This work is made available by a community of people, amongst which the INRIA Parietal Project Team and the scikit-learn folks, in particular P. Gervais, A. Abraham, V. Michel, A. Gramfort, G. Varoquaux, F. Pedregosa, B. Thirion, M. Eickenberg, C. F. Gorgolewski, D. Bzdok, L. Estève and B. Cipollini.

Dependencies

The required dependencies to use the software are:

  • Python >= 2.6,

  • setuptools

  • Numpy >= 1.6.1

  • SciPy >= 0.9

  • Scikit-learn >= 0.12.1

  • Nibabel >= 1.1.0

If you are using nilearn plotting functionalities or running the examples, matplotlib >= 1.1.1 is required.

If you want to run the tests, you need nose >= 1.2.1 and coverage >= 3.6.

Install

First make sure you have installed all the dependencies listed above. Then you can install nilearn by running the following command in a command prompt:

pip install -U --user nilearn

More detailed instructions are available at http://nilearn.github.io/introduction.html#installation.

Development

Code

GIT

You can check the latest sources with the command:

git clone git://github.com/nilearn/nilearn

or if you have write privileges:

git clone git@github.com:nilearn/nilearn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nilearn-0.1.4.post1.tar.gz (649.5 kB view details)

Uploaded Source

Built Distributions

nilearn-0.1.4.post1-py2.py3-none-any.whl (695.7 kB view details)

Uploaded Python 2 Python 3

nilearn-0.1.4.post1-py2.7.egg (963.9 kB view details)

Uploaded Source

File details

Details for the file nilearn-0.1.4.post1.tar.gz.

File metadata

File hashes

Hashes for nilearn-0.1.4.post1.tar.gz
Algorithm Hash digest
SHA256 50a1aec049ffb5691a57113aed5fa3a028add157127310b8c97e2dc4d3a9fc24
MD5 26c276f23fecc5b3e89be22c41a8a42e
BLAKE2b-256 af56b5337d46673de1a9a1363f2e8145a00ea09f3148f8375dfa17e58c49d395

See more details on using hashes here.

Provenance

File details

Details for the file nilearn-0.1.4.post1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for nilearn-0.1.4.post1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e1b6f4bb65df6bc163998c944e2c76e854e47d4ba3f339159ab007ca0c2e7144
MD5 1df6f1205f607c269bd71940d102ef9e
BLAKE2b-256 e1d1f48f2b657bac57e6a2dc499f14a070a4b9dce99e7f7d3055d1f222fb9257

See more details on using hashes here.

Provenance

File details

Details for the file nilearn-0.1.4.post1-py2.7.egg.

File metadata

File hashes

Hashes for nilearn-0.1.4.post1-py2.7.egg
Algorithm Hash digest
SHA256 5ff7c0df9a92c5749aac9107f5584835d2b75e529edfc17d4e5fa2f37069a9e7
MD5 122fd18bf865d5b12d71e9b72fa40fb5
BLAKE2b-256 a31ec9c60d5ef074e383d1a7a69067167b81052f653b203ce360d40a4d508487

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page