Skip to main content

Statistical learning for neuroimaging in Python

Project description

Travis Build Status AppVeyor Build Status https://coveralls.io/repos/nilearn/nilearn/badge.svg?branch=master

nilearn

Nilearn is a Python module for fast and easy statistical learning on NeuroImaging data.

It leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

This work is made available by a community of people, amongst which the INRIA Parietal Project Team and the scikit-learn folks, in particular P. Gervais, A. Abraham, V. Michel, A. Gramfort, G. Varoquaux, F. Pedregosa, B. Thirion, M. Eickenberg, C. F. Gorgolewski, D. Bzdok, L. Estève and B. Cipollini.

Dependencies

The required dependencies to use the software are:

  • Python >= 2.6,

  • setuptools

  • Numpy >= 1.6.1

  • SciPy >= 0.9

  • Scikit-learn >= 0.14.1

  • Nibabel >= 1.1.0

If you are using nilearn plotting functionalities or running the examples, matplotlib >= 1.1.1 is required.

If you want to run the tests, you need nose >= 1.2.1 and coverage >= 3.6.

Install

First make sure you have installed all the dependencies listed above. Then you can install nilearn by running the following command in a command prompt:

pip install -U --user nilearn

More detailed instructions are available at http://nilearn.github.io/introduction.html#installation.

Development

Detailed instructions on how to contribute are available at http://nilearn.github.io/contributing.html

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nilearn-0.2.5.1.tar.gz (767.6 kB view details)

Uploaded Source

Built Distributions

nilearn-0.2.5.1-py3.4.egg (1.3 MB view details)

Uploaded Source

nilearn-0.2.5.1-py2.py3-none-any.whl (838.1 kB view details)

Uploaded Python 2 Python 3

nilearn-0.2.5.1-py2.7.egg (1.3 MB view details)

Uploaded Source

File details

Details for the file nilearn-0.2.5.1.tar.gz.

File metadata

  • Download URL: nilearn-0.2.5.1.tar.gz
  • Upload date:
  • Size: 767.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nilearn-0.2.5.1.tar.gz
Algorithm Hash digest
SHA256 9b2f3ce450e10c2d67535d61912fe9c56c833c49343aa1d03b0a86adf93173a1
MD5 31712f371fdda5ecc60866916ee5e37c
BLAKE2b-256 18465a2b3f0e5dcc7a14322970e3338eadc80b7b90033558d6ec1627e3ace488

See more details on using hashes here.

Provenance

File details

Details for the file nilearn-0.2.5.1-py3.4.egg.

File metadata

File hashes

Hashes for nilearn-0.2.5.1-py3.4.egg
Algorithm Hash digest
SHA256 a4d7fb62be8801e9f802a5a9d131a982af9c4d23bb06b866f9421eafe617b331
MD5 2a52e157f0f89e69e18ddb0d23ad9048
BLAKE2b-256 cd10ac16a2e8cc0dbb944d167bd08358e86b4323a0442649637e4a445a2c9108

See more details on using hashes here.

Provenance

File details

Details for the file nilearn-0.2.5.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for nilearn-0.2.5.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 be5f909de7085f1fd96642fc9e9b44b4e70e25f0a03aa356d40ba76c37737712
MD5 657daad3f25c5c212e357bcb338aeb9f
BLAKE2b-256 2e7564556b923d820065d8a7fb592349092f89b942136ecadaaf4b27dba02303

See more details on using hashes here.

Provenance

File details

Details for the file nilearn-0.2.5.1-py2.7.egg.

File metadata

File hashes

Hashes for nilearn-0.2.5.1-py2.7.egg
Algorithm Hash digest
SHA256 6d4ea7f8f991904183f57e408644b74a176d3688b61b9505e6f8625f8ca0d78e
MD5 d901488084621fb58e4ab667cf40bf16
BLAKE2b-256 83d2dba4bd8fcb8f8a57901fb02db6f66e1e687da9b3b946f8c8f35be03ef75e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page