Skip to main content

A Python module for nonnegative matrix factorization

Project description

Nimfa

Nimfa is a Python module that implements many algorithms for nonnegative matrix factorization.

Documentation and examples are at Nimfa website.


Hidden patients and hidden genes - Understanding cancer data with matrix factorization is a tutorial-like IPython notebook on how one can use Nimfa to analyze breast cancer transcriptome data sets from The International Cancer Genome Consortium (ICGC). A column about the analysis of cancer data using Nimfa recently appearead in the ACM XRDS magazine.

Usage

Run alternating least squares nonnegative matrix factorization with projected gradients and Random Vcol initialization algorithm on medulloblastoma gene expression data:

>>> import nimfa
>>> V = nimfa.examples.medulloblastoma.read(normalize=True)
>>> lsnmf = nimfa.Lsnmf(V, seed='random_vcol', rank=50, max_iter=100)
>>> lsnmf_fit = lsnmf()
>>> print('Rss: %5.4f' % lsnmf_fit.fit.rss())
Rss: 0.2668
>>> print('Evar: %5.4f' % lsnmf_fit.fit.evar())
Evar: 0.9997
>>> print('K-L divergence: %5.4f' % lsnmf_fit.distance(metric='kl'))
K-L divergence: 38.8744
>>> print('Sparseness, W: %5.4f, H: %5.4f' % lsnmf_fit.fit.sparseness())
Sparseness, W: 0.7297, H: 0.8796

Citing

@article{Zitnik2012,
  title     = {Nimfa: A Python Library for Nonnegative Matrix Factorization},
  author    = {{\v{Z}}itnik, Marinka and Zupan, Bla{\v{z}}},
  journal   = {Journal of Machine Learning Research},
  volume    = {13},
  pages     = {849-853},
  year      = {2012}
}

License

nimfa - A Python Library for Nonnegative Matrix Factorization Techniques Copyright (C) 2011-2015 Marinka Zitnik and Blaz Zupan

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

JMLR Warranty

THIS SOURCE CODE IS SUPPLIED “AS IS” WITHOUT WARRANTY OF ANY KIND, AND ITS AUTHOR AND THE JOURNAL OF MACHINE LEARNING RESEARCH (JMLR) AND JMLR’S PUBLISHERS AND DISTRIBUTORS, DISCLAIM ANY AND ALL WARRANTIES, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES OR NON INFRINGEMENT. THE USER ASSUMES ALL LIABILITY AND RESPONSIBILITY FOR USE OF THIS SOURCE CODE, AND NEITHER THE AUTHOR NOR JMLR, NOR JMLR’S PUBLISHERS AND DISTRIBUTORS, WILL BE LIABLE FOR DAMAGES OF ANY KIND RESULTING FROM ITS USE.

Without limiting the generality of the foregoing, neither the author, nor JMLR, nor JMLR’s publishers and distributors, warrant that the Source Code will be error-free, will operate without interruption, or will meet the needs of the user.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nimfa-1.2.2.tar.gz (5.7 MB view details)

Uploaded Source

File details

Details for the file nimfa-1.2.2.tar.gz.

File metadata

  • Download URL: nimfa-1.2.2.tar.gz
  • Upload date:
  • Size: 5.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nimfa-1.2.2.tar.gz
Algorithm Hash digest
SHA256 6a4bf4e9df7df5c02a58bfb73dacb8bdbc1c7504d248f426ee96ec187fcd903d
MD5 4bbb5246b5f9977f2d484afc41b9ac5e
BLAKE2b-256 f16db215fbae6b632c04f455bd5c3da93fe11899528c8c8032af264616029a91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page