Skip to main content

Integrates SQLAlchemy with DataTables (framework agnostic) - Containing fixes for ninchanese.com

Project description

Installation

The package is available on PyPI and is tested on Python 2.7 to 3.4

pip install datatables

Usage

Using Datatables is simple. Construct a DataTable instance by passing it your request parameters (or another dict-like object), your model class, a base query and a set of columns. The columns list can contain simple strings which are column names, or tuples containing (datatable_name, model_name), (datatable_name, model_name, filter_function) or (datatable_name, filter_function).

Additional data such as hyperlinks can be added via DataTable.add_data, which accepts a callable that is called for each instance. Check out the usage example below for more info.

Example

models.py

class User(Base):
    __tablename__ = 'users'

    id          = Column(Integer, primary_key=True)
    full_name   = Column(Text)
    created_at  = Column(DateTime, default=datetime.datetime.utcnow)

    # Use lazy=joined to prevent O(N) queries
    address     = relationship("Address", uselist=False, backref="user", lazy="joined")

class Address(Base):
    __tablename__ = 'addresses'

    id          = Column(Integer, primary_key=True)
    description = Column(Text, unique=True)
    user_id     = Column(Integer, ForeignKey('users.id'))

views.py

@view_config(route_name="data", request_method="GET", renderer="json")
def users_data(request):
    # User.query = session.query(User)
    table = DataTable(request.GET, User, User.query, [
        "id",
        ("name", "full_name", lambda i: "User: {}".format(i.full_name)),
        ("address", "address.description"),
    ])
    table.add_data(link=lambda o: request.route_url("view_user", id=o.id))
    table.searchable(lambda queryset, user_input: perform_some_search(queryset, user_input))

    return table.json()

template.jinja2

<table class="table" id="clients_list">
    <thead>
        <tr>
            <th>Id</th>
            <th>User name</th>
            <th>Address</th>
        </tr>
    </thead>
    <tbody>
    </tbody>
</table>

<script>
    $("#clients_list").dataTable({
        serverSide: true,
        processing: true,
        ajax: "{{ request.route_url("data") }}",
        columns: [
            {
                data: "id",
                "render": function(data, type, row){
                    return $("<div>").append($("<a/>").attr("href", row.DT_RowData.link).text(data)).html();
                }
            },
            { data: "name" },
            { data: "address" }
        ]
</script>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ninchanese_datatables-0.5.1-py2.py3-none-any.whl (7.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ninchanese_datatables-0.5.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for ninchanese_datatables-0.5.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ecb93b0d52b70625d9b7c28e52b30560def68cfb262233f7198d8f759cf83c65
MD5 ccaec4f6513f92eada722f07dbdadcd1
BLAKE2b-256 d35b2857f9ee92d40d8bb5baca6ef4ac13795c4eb116706f2fa3bc64210a72c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page