Skip to main content

Wrapper for creating vectorized gymnasium environments.

Project description

Ninetails

A wrapper for creating vectorized gymnasium environments.

Installation

pip3 install ninetails

Usage

import gymnasium as gym
import numpy as np

from ninetails import SubProcessVectorGymnasiumEnv


def main() -> None:
    """main.

    Returns:
        None:
    """
    # define your environment using a function that returns the environment here
    env_fns = [lambda i=i: gym.make("MountainCarContinuous-v0") for i in range(1)]

    # create a vectorized environment
    # `strict` is useful here for debugging
    vec_env = SubProcessVectorGymnasiumEnv(env_fns=env_fns, strict=True)

    # define our initial termination and trunction arrays
    terminations, truncations = np.array([False]), np.array([False])

    # reset follows the same signature as a Gymnasium environment
    observations, infos = vec_env.reset(seed=42)

    for step_count in range(5000):
        # sample an action, this is an np.ndarray of [num_envs, *env.action_space.shape]
        actions = vec_env.sample_actions()

        # similarly, the step function follows the same signature as a Gymnasium environment with the following shapes
        # observations: np.ndarray of shape [num_envs, *env.observation_space.shape]
        # rewards: np.ndarray of shape [num_envs, 1]
        # terminations: np.ndarray of shape [num_envs, 1]
        # truncations: np.ndarray of shape [num_envs, 1]
        # infos: tuple[dict[str, Any]]
        observations, rewards, terminations, truncations, infos = vec_env.step(actions)

        # to reset underlying environments
        done_ids = set(np.where(terminations).tolist() + np.where(truncations).tolist())
        for id in done_ids:
            # warning, you'll have to handle starting observations yourself here
            reset_obs, reset_info = vec_env.reset(id)


if __name__ == "__main__":
    main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ninetails-0.0.2.tar.gz (7.9 kB view hashes)

Uploaded Source

Built Distribution

ninetails-0.0.2-py3-none-any.whl (8.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page