Skip to main content

Library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

Project description

NLOpt Python

PyPI version Build

This project builds Python wheels for the NLOpt library. NLOpt contains various routines for non-linear optimization.

Versions supported

The project supports Python versions 3.6+ and above for Windows, MacOS, and Linux.

Installation

pip install nlopt

Documentation

For more information on how to use NLOpt, refer to the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nlopt-2.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (427.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

nlopt-2.8.0-cp313-cp313-macosx_11_0_arm64.whl (357.8 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

nlopt-2.8.0-cp312-cp312-win_amd64.whl (349.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

nlopt-2.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (427.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nlopt-2.8.0-cp312-cp312-macosx_11_0_arm64.whl (357.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

nlopt-2.8.0-cp311-cp311-win_amd64.whl (348.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

nlopt-2.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (426.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nlopt-2.8.0-cp311-cp311-macosx_11_0_arm64.whl (356.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

nlopt-2.8.0-cp310-cp310-win_amd64.whl (348.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

nlopt-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (425.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nlopt-2.8.0-cp310-cp310-macosx_11_0_arm64.whl (355.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

nlopt-2.8.0-cp39-cp39-win_amd64.whl (348.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

nlopt-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (425.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nlopt-2.8.0-cp39-cp39-macosx_11_0_arm64.whl (355.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file nlopt-2.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nlopt-2.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc2f065ca5f6b25c4f160468f1fc6272795267fb3b3d9ff4809a8a34e0b6da98
MD5 a43a73192ac7fa7da6db2d2243168e85
BLAKE2b-256 915cdd2ef32b609e39c1e7058153567dc269623f36644c09d3840ee11a418050

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nlopt-2.8.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d6410d267a4a6b3ad97cd266ab9062cd19d8209eee4b9af75a0b78a9fcf738f
MD5 fa44006bb64dfd281ca2da4c3ed2378c
BLAKE2b-256 0d6b771ee669da54c908dc48f377a630d01de965883bf2a66437d8c9856640d8

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: nlopt-2.8.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 349.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for nlopt-2.8.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 86733d1ce1b4fb54f1917c342d14a9631e912bab723b077cf87c7fe5c8d64d43
MD5 ce90ea59fb377176282173af626f0a2e
BLAKE2b-256 96fce3c53858845f232c060b76c91a7b2afba818373d5a5d2cf7e7fa0671f315

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nlopt-2.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fac548c26f2837f348f204860ba2ba49c60bddfe1d280e11f9a0c66dde4b1c9
MD5 f08cae9487da8b93ba1d410a2131cf63
BLAKE2b-256 9c41eb8e9aaa74998c3d35de0efafdaf76812739d366635efb7e46fd2c0e668a

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nlopt-2.8.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11539da1d091fa0cb982150210445676ad3132de27696b00bcf2f8f8da686da9
MD5 6481355c9da3e438e30209de7da650e4
BLAKE2b-256 73ff44efc8d024cee1b8bc985188ad99b60192cfbbb8b8793b1f214a1aaa5d25

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nlopt-2.8.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 348.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for nlopt-2.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 86d1ca8e2dbc7f89e13d0e158afca1fafc69b82e481fc9b669251e34ba652385
MD5 78520c9afab5dc13ff3011ebdae7d548
BLAKE2b-256 4edadf3b6bb8e3c5dee0eb32d6135056ebbc256be033ea1833648f6ae65fcb16

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nlopt-2.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8631dcf532219156217c1c3b04ec1dea22a7368ec0d5ce958a93717acca82ca
MD5 72e018c82380602c18df325548f87088
BLAKE2b-256 ad7b2f264a48659facb61f7d983b7a9b6c2feca1cdf3aac38317df00b7b960d9

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nlopt-2.8.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d9e41fd7095e0d1faa7933b40ae11cd48740bfa116ea798c6072d676c6047147
MD5 d717bfb0540a9c46fe72add0327a3625
BLAKE2b-256 fce76d17ef06a87fa8e0c9ac415ac16dba0c9587103458e8d7660e99a0607b1e

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nlopt-2.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 348.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for nlopt-2.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b51123f8aa87905ac6a78d509b6c93fc281c157c82e878040d7bae44e0c7a350
MD5 1081b5c71c671c498b4a6dad40230909
BLAKE2b-256 bc9a415c6b5b80170308da9900a24221f52354276345b3a5d0ce778e72e4aed2

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nlopt-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 893409b0321353c60945b270e549ec364665bb38c66f989df7bbe32c50886dd8
MD5 d032b6bc0fea062fa56c621c33e89dc3
BLAKE2b-256 89fc0b3d0fa9801d876dfc59dea173645e0084b39a89cfa9ca90da3a2915ac54

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nlopt-2.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88e35d4f57b2bae84ac5c71ccc9a7d53e0df5db33855ce1d05efdb96a63fb684
MD5 50cfd1a97ce0c5169d78f767eac0b915
BLAKE2b-256 db577b6d0df546243d3870ef27c8cecbfc76752d896fccf1a35c3cde1fee974f

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nlopt-2.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 348.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for nlopt-2.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9f6b14f06ee1399bd06fd46e462cd7ebd23b8f4d1d0ebb5e7949d101e073361c
MD5 a592a27a0bcc298bf30e98e82de57013
BLAKE2b-256 5ff35148f9945e69ebb1d2069c9984f96ecf260d060e82391d65ab9f095f4076

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nlopt-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8eaced0601a2bbeca61bd9ecd1e58ccada15fbd4a89d81b38c8659504875e1b2
MD5 90b77f218efa8e07548a039634690ce1
BLAKE2b-256 92ef6a6a0a4f5f04fb0329072ad328753dd85da5e26dfd49bac76ffbd88fa6b6

See more details on using hashes here.

File details

Details for the file nlopt-2.8.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nlopt-2.8.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4acba505d4e5ae84ba26b1f892a0cae2a1a5c90a5794f52305b4f6accc0b50a7
MD5 885925100f662d79366a4ed206a33d0f
BLAKE2b-256 5f11d1e8d26b0aca643974d88b011d04d5f75160e360a87ce658e14b4c844c31

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page