Skip to main content

Utilities for nolearn.lasagne

Project description

# nolearn-utils

[![Build Status](https://travis-ci.org/felixlaumon/nolearn_utils.svg?branch=master)](https://travis-ci.org/felixlaumon/nolearn_utils)

Iterators and handlers for nolearn.lasagne to allow efficient real-time image augmentation and training progress monitoring

## Real-time image augmentation

- `ShuffleBatchIteratorMixin` to shuffle training samples
- `ReadImageBatchIteratorMixin` to transform image file path into image as color or as gray, and with specified image size
- `RandomFlipBatchIteratorMixin` to randomly (uniform) flip the image horizontally or verticaly
- `AffineTransformBatchIteratorMixin` to apply affine transformation (scale, rotate, translate) to randomly selected images from the given transformation options - `BufferedBatchIteratorMixin` to perform transformation in another thread automatically and put the result in a buffer (default size = 5)
- `LCNBatchIteratorMixin` to perform local contrast normalization to images
- `MeanSubtractBatchIteratorMixin` to subtract samples from the pre-calculated mean

Example of using iterators as below:

train_iterator_mixins = [
ShuffleBatchIteratorMixin,
ReadImageBatchIteratorMixin,
RandomFlipBatchIteratorMixin,
AffineTransformBatchIteratorMixin,
BufferedBatchIteratorMixin,
]
TrainIterator = make_iterator('TrainIterator', train_iterator_mixins)

train_iterator_kwargs = {
'buffer_size': 5,
'batch_size': batch_size,
'read_image_size': (image_size, image_size),
'read_image_as_gray': False,
'read_image_prefix_path': './data/train/',
'flip_horizontal_p': 0.5,
'flip_vertical_p': 0,
'affine_p': 0.5,
'affine_scale_choices': np.linspace(0.75, 1.25, 5),
'affine_translation_choices': np.arange(-3, 4, 1),
'affine_rotation_choices': np.arange(-45, 50, 5)
}
train_iterator = TrainIterator(**train_iterator_kwargs)

The `BaseBatchIterator` is also modified from `nolearn.lasagne` to provide a progress bar for training process for each iteration

## Handlers

- `EarlyStopping` stops training when loss stop improving
- `StepDecay` to gradually reduce a parameter (e.g. learning rate) over time
- `SaveTrainingHistory` to save training history (e.g. training loss)
- `PlotTrainingHistory` to plot out training loss and validation accuracy
over time after each iteration with matplotlib

## Examples

Example code requires `scikit-learn`

### MNIST

`example/mnist/train.py` should produce a model of about 99.5% accuracy in less than 50 epoch.

MNIST data can be downloaded from
[Kaggle](https://www.kaggle.com/c/digit-recognizer).

### CIFAR10

CIFAR10 images can be downloaded from [Kaggle](https://www.kaggle.com/c/cifar-10/data). Place the downloaded data as follows:

examples/cifar10
├── data
│   ├── train
│ | ├── 1.png
│ | ├── 2.png
│ | ├── 3.png
│ | ├── ...
│   └── trainLabels.csv
└── train.py

`example/cifat10/train.py` should produce a model at about 85% accuracy at 100 epoch. Images are read from disk and augmented at training time (from another thread)


## TODO

- [ ] Embarrassingly parallelize transform


## License

MIT & BSD




Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nolearn_utils-0.2.tar.gz (10.3 kB view details)

Uploaded Source

Built Distribution

nolearn_utils-0.2-py2-none-any.whl (14.3 kB view details)

Uploaded Python 2

File details

Details for the file nolearn_utils-0.2.tar.gz.

File metadata

  • Download URL: nolearn_utils-0.2.tar.gz
  • Upload date:
  • Size: 10.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nolearn_utils-0.2.tar.gz
Algorithm Hash digest
SHA256 0946bad297f8f4088ccca8236d1b79bab5605d5b650c1dad52b6bed193cbf512
MD5 8feddf0c8d8d2ee3f8de6198eacac290
BLAKE2b-256 2897d8069855c57c91705026630d66ac8e6d45be99f97f64d915735b9aa638a2

See more details on using hashes here.

File details

Details for the file nolearn_utils-0.2-py2-none-any.whl.

File metadata

File hashes

Hashes for nolearn_utils-0.2-py2-none-any.whl
Algorithm Hash digest
SHA256 434840284edf26dd14eb0df4a9f98435b94a578223738731e457ae174c9dae90
MD5 9df890a15ae80f958c86f684b4cef510
BLAKE2b-256 cf3db37fc12247997ca595bbbc117e91c88b69da2526090d6a47f06aabfe3454

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page