Skip to main content

Utilities for nolearn.lasagne

Project description

# nolearn-utils

[![Build Status](https://travis-ci.org/felixlaumon/nolearn_utils.svg?branch=master)](https://travis-ci.org/felixlaumon/nolearn_utils)

Iterators and handlers for nolearn.lasagne to allow efficient real-time image augmentation and training progress monitoring

## Real-time image augmentation

- `ShuffleBatchIteratorMixin` to shuffle training samples
- `ReadImageBatchIteratorMixin` to transform image file path into image as color or as gray, and with specified image size
- `RandomFlipBatchIteratorMixin` to randomly (uniform) flip the image horizontally or verticaly
- `AffineTransformBatchIteratorMixin` to apply affine transformation (scale, rotate, translate) to randomly selected images from the given transformation options - `BufferedBatchIteratorMixin` to perform transformation in another thread automatically and put the result in a buffer (default size = 5)
- `LCNBatchIteratorMixin` to perform local contrast normalization to images
- `MeanSubtractBatchIteratorMixin` to subtract samples from the pre-calculated mean

Example of using iterators as below:

train_iterator_mixins = [
ShuffleBatchIteratorMixin,
ReadImageBatchIteratorMixin,
RandomFlipBatchIteratorMixin,
AffineTransformBatchIteratorMixin,
BufferedBatchIteratorMixin,
]
TrainIterator = make_iterator('TrainIterator', train_iterator_mixins)

train_iterator_kwargs = {
'buffer_size': 5,
'batch_size': batch_size,
'read_image_size': (image_size, image_size),
'read_image_as_gray': False,
'read_image_prefix_path': './data/train/',
'flip_horizontal_p': 0.5,
'flip_vertical_p': 0,
'affine_p': 0.5,
'affine_scale_choices': np.linspace(0.75, 1.25, 5),
'affine_translation_choices': np.arange(-3, 4, 1),
'affine_rotation_choices': np.arange(-45, 50, 5)
}
train_iterator = TrainIterator(**train_iterator_kwargs)

The `BaseBatchIterator` is also modified from `nolearn.lasagne` to provide a progress bar for training process for each iteration

## Handlers

- `EarlyStopping` stops training when loss stop improving
- `StepDecay` to gradually reduce a parameter (e.g. learning rate) over time
- `SaveTrainingHistory` to save training history (e.g. training loss)
- `PlotTrainingHistory` to plot out training loss and validation accuracy
over time after each iteration with matplotlib

## Examples

Example code requires `scikit-learn`

### MNIST

`example/mnist/train.py` should produce a model of about 99.5% accuracy in less than 50 epoch.

MNIST data can be downloaded from
[Kaggle](https://www.kaggle.com/c/digit-recognizer).

### CIFAR10

CIFAR10 images can be downloaded from [Kaggle](https://www.kaggle.com/c/cifar-10/data). Place the downloaded data as follows:

examples/cifar10
├── data
│   ├── train
│ | ├── 1.png
│ | ├── 2.png
│ | ├── 3.png
│ | ├── ...
│   └── trainLabels.csv
└── train.py

`example/cifat10/train.py` should produce a model at about 85% accuracy at 100 epoch. Images are read from disk and augmented at training time (from another thread)


## TODO

- [ ] Embarrassingly parallelize transform


## License

MIT & BSD




Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nolearn_utils-0.3.0.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

nolearn_utils-0.3.0-py2.py3-none-any.whl (14.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file nolearn_utils-0.3.0.tar.gz.

File metadata

File hashes

Hashes for nolearn_utils-0.3.0.tar.gz
Algorithm Hash digest
SHA256 41e3169a22c87303cc8c000a141d025f34a964ab627a8e53fa6c5b0239ad3a4e
MD5 53028198cce4587ca06e55524b0698f4
BLAKE2b-256 26464f9844129aaa32a2a8430a5937fc1e74e62e4b5058aa086a716f7215b8b4

See more details on using hashes here.

File details

Details for the file nolearn_utils-0.3.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for nolearn_utils-0.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e071b465cc8012958d5acf1eeb3552045bfb640a3994bbb431d6ed2fc910cb8a
MD5 b14aa69b5770808a5845650f85be716c
BLAKE2b-256 412e9f9cabd47cc956dc2e463143184bce20ab42ed8543635f41d9bed10ea045

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page