Skip to main content

Utilities for nolearn.lasagne

Project description

# nolearn-utils

[![Build Status](https://travis-ci.org/felixlaumon/nolearn_utils.svg?branch=master)](https://travis-ci.org/felixlaumon/nolearn_utils)

Iterators and handlers for nolearn.lasagne to allow efficient real-time image augmentation and training progress monitoring

## Real-time image augmentation

- `ShuffleBatchIteratorMixin` to shuffle training samples
- `ReadImageBatchIteratorMixin` to transform image file path into image as color or as gray, and with specified image size
- `RandomFlipBatchIteratorMixin` to randomly (uniform) flip the image horizontally or verticaly
- `AffineTransformBatchIteratorMixin` to apply affine transformation (scale, rotate, translate) to randomly selected images from the given transformation options - `BufferedBatchIteratorMixin` to perform transformation in another thread automatically and put the result in a buffer (default size = 5)
- `LCNBatchIteratorMixin` to perform local contrast normalization to images
- `MeanSubtractBatchIteratorMixin` to subtract samples from the pre-calculated mean

Example of using iterators as below:

train_iterator_mixins = [
ShuffleBatchIteratorMixin,
ReadImageBatchIteratorMixin,
RandomFlipBatchIteratorMixin,
AffineTransformBatchIteratorMixin,
BufferedBatchIteratorMixin,
]
TrainIterator = make_iterator('TrainIterator', train_iterator_mixins)

train_iterator_kwargs = {
'buffer_size': 5,
'batch_size': batch_size,
'read_image_size': (image_size, image_size),
'read_image_as_gray': False,
'read_image_prefix_path': './data/train/',
'flip_horizontal_p': 0.5,
'flip_vertical_p': 0,
'affine_p': 0.5,
'affine_scale_choices': np.linspace(0.75, 1.25, 5),
'affine_translation_choices': np.arange(-3, 4, 1),
'affine_rotation_choices': np.arange(-45, 50, 5)
}
train_iterator = TrainIterator(**train_iterator_kwargs)

The `BaseBatchIterator` is also modified from `nolearn.lasagne` to provide a progress bar for training process for each iteration

## Handlers

- `EarlyStopping` stops training when loss stop improving
- `StepDecay` to gradually reduce a parameter (e.g. learning rate) over time
- `SaveTrainingHistory` to save training history (e.g. training loss)
- `PlotTrainingHistory` to plot out training loss and validation accuracy
over time after each iteration with matplotlib

## Examples

Example code requires `scikit-learn`

### MNIST

`example/mnist/train.py` should produce a model of about 99.5% accuracy in less than 50 epoch.

MNIST data can be downloaded from
[Kaggle](https://www.kaggle.com/c/digit-recognizer).

### CIFAR10

CIFAR10 images can be downloaded from [Kaggle](https://www.kaggle.com/c/cifar-10/data). Place the downloaded data as follows:

examples/cifar10
├── data
│   ├── train
│ | ├── 1.png
│ | ├── 2.png
│ | ├── 3.png
│ | ├── ...
│   └── trainLabels.csv
└── train.py

`example/cifat10/train.py` should produce a model at about 85% accuracy at 100 epoch. Images are read from disk and augmented at training time (from another thread)


## TODO

- [ ] Embarrassingly parallelize transform


## License

MIT & BSD




Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nolearn_utils-0.3.1.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

nolearn_utils-0.3.1-py2.py3-none-any.whl (14.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file nolearn_utils-0.3.1.tar.gz.

File metadata

File hashes

Hashes for nolearn_utils-0.3.1.tar.gz
Algorithm Hash digest
SHA256 e4fe82bc7a06280abb022bcf8ae0cef89ea8175a7a852aaab8645c2792f9bd47
MD5 dc37455527c0dcdec20f029148aa4928
BLAKE2b-256 3af981dbcb7ddb82f88e2e5c81782bf9286e56eeda31448838cf22b0f9b0b21a

See more details on using hashes here.

File details

Details for the file nolearn_utils-0.3.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for nolearn_utils-0.3.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2450bae28ae7372b09481f4fe5453269e18c15786d4b8d66a2bbc0e6de5848ec
MD5 fbc3e36a12106e975ed1874f70597900
BLAKE2b-256 80063d17dd986e7d1c0a2ce030ce9a9a0233cc2577256a362e7bc2314ddf1ec5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page