Skip to main content

Workflow Engine

Project description

Travis DOI codecov

Noodles - easy parallel programming for Python

Often, a computer program can be sped up by executing parts of its code in parallel (simultaneously), as opposed to synchronously (one part after another).

A simple example may be where you assign two variables, as follows a = 2 * i and b = 3 * i. Either statement is only dependent on i, but whether you assign a before b or vice versa, does not matter for how your program works. Whenever this is the case, there is potential to speed up a program, because the assignment of a and b could be done in parallel, using multiple cores on your computer’s CPU. Obviously, for simple assignments like a = 2 * i, there is not much time to be gained, but what if a is the result of a time-consuming function, e.g. a = very_difficult_function(i)? And what if your program makes many calls to that function, e.g. list_of_a = [very_difficult_function(i) for i in list_of_i]? The potential speed-up could be tremendous.

So, parallel execution of computer programs is great for improving performance, but how do you tell the computer which parts should be executed in parallel, and which parts should be executed synchronously? How do you identify the order in which to execute each part, since the optimal order may be different from the order in which the parts appear in your program. These questions quickly become nearly impossible to answer as your program grows and changes during development. Because of this, many developers accept the slow execution of their program only because it saves them from the headaches associated with keeping track of which parts of their program depend on which other parts.

Enter Noodles.

Noodles is a Python package that can automatically construct a callgraph for a given Python program, listing exactly which parts depend on which parts. Moreover, Noodles can subsequently use the callgraph to execute code in parallel on your local machine using multiple cores. If you so choose, you can even configure Noodles such that it will execute the code remotely, for example on a big compute node in a cluster computer.

Installation

Install the following in a virtualenv:

pip install .

To enable Xenon for remote execution, Java must be installed, and Xenon can be installed with

pip install '.[xenon]'

If Java cannot be found (needed by Xenon), run

export JAVA_HOME="/usr/lib/jvm/default-java"  # or similar...

in your shell initialization script (like ~/.bashrc).

To enable the TinyDB based job database, run

pip install '.[prov]'

This is needed if you want to interrupt a running workflow and resume where you left of, or to reuse results over multiple runs.

To run unit tests, run

pip install '.[test]'
nosetests test

Some tests depend on the optional modules being installed. Those are skipped if if imports fail. If you want to test everything, make sure you have NumPy installed as well.

The prototype

The prototype is very simple. It should support the definition of function objects that are manageable in the workflow engine and give output of the workflow as a graph. The only dependency of this prototype should be the graph plotting library: pygraphviz. To keep the interface clean, we avoid the use of Fireworks specific functionality at this point. The abstract concepts in this context are: workflow, node, link.

Developers interface

Questions:

  • What does a developer adding functionality to the workflow engine need to know?

  • How do we specify the surrounding context of functions in terms of types and monadic context?

User interface

The user should have it easy. From the spirit of wishful programming, we may give here some examples of how the user would use the workflow engine.

Prototype example

The developer has prepared some nice functions for the user:

@schedule
def f(a, b):
    return a+b

@schedule
def g(a, b):
    return a-b

@schedule
def h(a, b):
    return a*b

The user then uses these in a workflow:

u = f(5, 4)
v = g(u, 3)
w = g(u, 2)
x = h(v, w)

draw_graph("graph-example1.svg", x)

Resulting in the graph:

examples/callgraph.png?raw=true

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Noodles-0.3.0.tar.gz (60.9 kB view details)

Uploaded Source

File details

Details for the file Noodles-0.3.0.tar.gz.

File metadata

  • Download URL: Noodles-0.3.0.tar.gz
  • Upload date:
  • Size: 60.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for Noodles-0.3.0.tar.gz
Algorithm Hash digest
SHA256 25e6e10922d5707354b18e2e019c1c5f1879dcdcbce77684132f6c3a5068f9a6
MD5 873bc1053cc760527f028f4e19997154
BLAKE2b-256 5779dd6aa8551dbd7938d80e12d51f22870311ddac23440157705ae740578f93

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page