Skip to main content

No project description provided

Project description

numba-smartjit

Intro

smartjit @jit decorator adds extra customization of when code execution should fall back to the interpreter. It works as follow:

  1. For jitted functions with cache (overloads), use the jitted function if available, and interpreted code otherwise
  2. Add a dispatching logic, an optional function to pass to the jit decorator, which will decide wether to use jit or not.

Changes

smartjit @jit decorator accepts the same set of argument as @numba.jit or @numba.jit with the addition of two new keyword arguments:

  • use_jit: Callback
    • Callback function which returns an smart_jit.Action, determining whether to use jit compilation. Action.INTERPRETER will cause the function to always be interpreted, while Action.JIT will cause the function to always be JITted. If a callback function is passed, it will be evaluated on each function call, and the result will determine whether that call should be jitted or interpreted.
  • warn_on_fallback: bool
    • Enabling this option will trigger a warning when JIT compilation/execution fails to utilize the JIT compiler and instead defaults to using the interpreter. This feature can be useful for debugging purposes. Default is False.

We also implement an Enum, named Action, which contains the set of possible actions one can return from use_jit callable:

  • Action.INTERPRETER: Fallback execution to the interpreter
  • Action.JIT: JIT compile and execute
  • Action.RAISE_EXCEPTION: Raise no match TypeError

How to use it

from smart_jit import jit, Action
import numpy as np

def use_jit_sum_fast(A):
    # use jit compilation when length of A is greater than 100_000
    if len(A) > 100_000:
        return Action.JIT
    return Action.INTERPRETER

@jit(fastmath=True, use_jit=use_jit_sum_fast, warn_on_fallback=True)
def sum_fast(A):
    acc = 0.0
    # with fastmath, the reduction can be vectorized as floating point
    # reassociation is permitted.
    for x in A:
        acc += np.sqrt(x)
    return acc

A_small = np.arange(1_000, dtype=np.float64)
A_big = np.arange(1_000_000, dtype=np.float64)
In [1]: sum_fast(A_small)  # interpreter
/Users/guilhermeleobas/git/numba-smartjit/smartjit.py:45: NumbaInterpreterModeWarning: sum_fast not using JIT
  warnings.warn(msg, NumbaInterpreterModeWarning)
Out[1]: 21065.833110879048

In [2]: sum_fast(A_big)  # will trigger jit compilation + execution
Out[2]: 666666166.4588218

In the example above, calling sum_fast with a A_big triggered jit compilation, whereas calling with A_small didn’t.

One important thing to notice is, after sum_fast is compiled for A_big, calling sum_fast again for A_small will now call the jitted version of sum_fast, since now there is an overload that matches the provided argument:

In [3]: sum_fast.signatures
Out[3]: [(array(float64, 1d, C),)]

In [4]: sum_fast(A_small)
Out[4]: 21065.83311087906

Providing signatures ahead-of-time

It is also possible to provide signatures ahead-of-time to the @jit decorator:

from smart_jit import jit, Action

def use_jit(a, b):
    # fallback to interpreter mode
    return Action.INTERPRETER

@jit(['int64(int64, int64)', 'float64(float64, float64)'],
             use_jit=use_jit, warn_on_fallback=True)
def add(a, b):
    return a + b
In [1]: add.signatures
Out[1]: [(int64, int64), (float64, float64)]

In [2]: add(2, 3)
Out[2]: 5

In [3]: add(2.2, 4.4)
Out[3]: 6.6000000000000005

Calling with a type that was not specified before will use the behavior returned by the use_jit function.

In [4]: add('hello', ', world')
/Users/guilhermeleobas/git/numba-smartjit/smart_jit.py:62: NumbaInterpreterModeWarning: add(unicode_type, unicode_type) not using JIT
  warnings.warn(msg, NumbaInterpreterModeWarning)
Out[4]: 'hello, world'

In [5]: add.signatures
Out[5]: [(int64, int64), (float64, float64)]

This differs from other other decorators in Numba, which raises a TypeError when a matching error happens.

from numba import njit
@njit('int32(int32, int32)')
def fn(a, b):
    return a
In [1]: fn('hello', 'world')
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[1], line 1
----> 1 fn('hello', 'world')

File ~/git/numba/numba/core/dispatcher.py:703, in _DispatcherBase._explain_matching_error(self, *args, **kws)
    700 args = [self.typeof_pyval(a) for a in args]
    701 msg = ("No matching definition for argument type(s) %s"
    702        % ', '.join(map(str, args)))
--> 703 raise TypeError(msg)

TypeError: No matching definition for argument type(s) unicode_type, unicode_type

Raising exception on unexpected types

It is possible to raise an exception when use_jit is called with unexpected types. This can be achieved by returning Action.RAISE_EXCEPTION from the callback:

from smart_jit import smart_jit, Action

def use_jit(a):
    if isinstance(a, int):
        return Action.JIT
    elif isinstance(a, str):
        return Action.RAISE_EXCEPTION
    else:
        return Action.INTERPRETER

@smart_jit(use_jit=use_jit, warn_on_fallback=True)
def double(a):
    return a + a
In [1]: double(3)
Out[1]: 6

In [2]: double(4.4)
/Users/guilhermeleobas/git/numba-smartjit/smart_jit.py:62: NumbaInterpreterModeWarning: double(float64) not using JIT
  warnings.warn(msg, NumbaInterpreterModeWarning)
Out[2]: 8.8

In [3]: double.signatures
Out[3]: [(int64,)]

In [4]: double('hello')
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[4], line 1
----> 1 double('hello')

File ~/git/numba-smartjit/smart_jit.py:133, in SmartJitDispatcher.__call__(self, *args, **kwargs)
    131     return self._fallback_interpreter(*args, **kwargs)
    132 elif jit_action == Action.RAISE_EXCEPTION:
--> 133     self._explain_matching_error(*args, **kwargs)
    134 else:
    135     msg = (
    136         'Invalid value returned from "use_jit" keyword. Expected '
    137         'one of "INTERPRETER, JIT_COMPILER, RAISE_EXCEPTION" '
    138         f'but got "{jit_action}"'
    139     )

File ~/git/numba/numba/core/dispatcher.py:703, in _DispatcherBase._explain_matching_error(self, *args, **kws)
    700 args = [self.typeof_pyval(a) for a in args]
    701 msg = ("No matching definition for argument type(s) %s"
    702        % ', '.join(map(str, args)))
--> 703 raise TypeError(msg)

TypeError: No matching definition for argument type(s) unicode_type

smart_jit with caching enabled (cache=True)

If present, cached functions are loaded on demand. When executing a function, smart_jit will check if there is a function in cache that matches the signature before calling use_jit.

from smart_jit import jit, Action

def use_jit(a):
    print(f'called "use_jit" with {a}')
    return Action.JIT

@jit(use_jit=use_jit, cache=True)
def incr(a):
    return a + 1

Calling for the first time will trigger JIT compilation and caching:

$ ipython -i example.py

In [1]: incr(4)
called "use_jit" with <class 'int'>
Out[1]: 5

Calling the same function a second time will use the cached overload:

$ ipython -i example.py

In [1]: incr(4)
Out[1]: 5

In [2]: # But only if the signature was previously cached

In [3]: incr(1.23)
called "use_jit" with <class 'float'>
Out[3]: 2.23

Caveats

It is possible to track wether a function is using jit compilation/execution with the help of event listeners. Numba provides an API for listening to certain events that happens inside the compiler. For the @smart_jit work, I’ve implemented two new event kinds (jit_execution and interpreter_execution) that are notified when jit or interpreter execution happens. Example:

from smart_jit import jit, Action
from numba.core import event

class CustomListener(event.Listener):
    def on_start(self, event):
        print(f'Start {event.kind}...')

    def on_end(self, event):
        print(f'End {event.kind}...')

def int_jit(a):
    if isinstance(a, int):
        return Action.JIT
    return Action.INTERPRETER

@jit(use_jit=int_jit)
def incr(a):
    return a + 1
In [1]: listener = CustomListener()
   ...: with event.install_listener("jit_execution", listener):
   ...:     incr(4)
   ...:
Start jit_execution...
End jit_execution...

Calling incr with a float value will not trigger the jit_execution event, but will trigger interpreter_execution:

In [2]: with event.install_listener("jit_execution", listener):
   ...:     incr(1.23)
   ...:

In [3]: with event.install_listener("interpreter_execution", listener):
   ...:     incr(1.23)
   ...:
Start interpreter_execution...
End interpreter_execution...

Limitations

All limitations of Numba @jit persist.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numba-smartjit-0.0.1rc1.tar.gz (9.7 kB view details)

Uploaded Source

Built Distribution

numba_smartjit-0.0.1rc1-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file numba-smartjit-0.0.1rc1.tar.gz.

File metadata

  • Download URL: numba-smartjit-0.0.1rc1.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.29.0

File hashes

Hashes for numba-smartjit-0.0.1rc1.tar.gz
Algorithm Hash digest
SHA256 b58b953e2ed8c2346398561fce8e64f4bfdb07950b890335d49057ac4cec755f
MD5 0e10c1fa42ea1f13cd5e3e9b9aba1c98
BLAKE2b-256 6257988025c9ccc757b76b9e4a8121f2e25a165987e1f0eec2183360d8b34b3f

See more details on using hashes here.

File details

Details for the file numba_smartjit-0.0.1rc1-py3-none-any.whl.

File metadata

File hashes

Hashes for numba_smartjit-0.0.1rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 6b27f8d0f41348191a48a6ab0aca0a8f1108e71be47be3a58d626a9ba29c980e
MD5 32f48db5e2d12aea2a1fdb84902f9cb2
BLAKE2b-256 2b8257df305c4c294d2b320aa850c56cff7ec27bed4810eb0e5f85532e736a3c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page