Skip to main content

Numba-accelerated implementations of common probability distributions

Project description

numba-stats

We provide numba-accelerated implementations of statistical functions for common probability distributions

  • Uniform
  • (Truncated) Normal
  • Log-normal
  • Poisson
  • (Truncated) Exponential
  • Student's t
  • Voigtian
  • Crystal Ball
  • Generalised double-sided Crystal Ball
  • Tsallis-Hagedorn, a model for the minimum bias pT distribution
  • Q-Gaussian
  • Bernstein density (not normalised to unity, use this in extended likelihood fits)

with more to come. The speed gains are huge, up to a factor of 100 compared to scipy. Benchmarks are included in the repository and are run by pytest.

Documentation (or lack of)

Because of a technical limitation of Numba, this project is poorly documented. Functions with equivalents in scipy.stats follow the Scipy calling conventions exactly. These conventions are sometimes a bit unusual, for example, in case of the exponential, the log-normal or the uniform distribution. See the SciPy docs for details.

Please look into the source code for documentation of the other functions.

Technical note: pydoc numba_stats does not show anything useful, because numba.vectorize creates instances of a class DUFunc. The wrapped functions show up as objects of that class and help() shows the generic documentation of that class instead of the documentation for the instances.

Contributions

You can help with adding more distributions, patches are very welcome. Implementing a probability distribution is easy. You need to write it in simple Python that numba can understand. Special functions from scipy.special can be used after some wrapping, see submodule numba_stats._special.py how it is done.

Plans for version 1.0

Version v1.0 will introduce breaking changes to the API. Users are recommended to update their code.

# before v0.8
from numba_stats import norm_pdf
from numba_stats.stats import norm_cdf

dp = norm_pdf(1, 2, 3)
p = norm_cdf(1, 2, 3)

# recommended since v0.8
from numba_stats import norm

dp = norm.pdf(1, 2, 3)
p = norm.cdf(1, 2, 3)

This is nicer code, but more importantly, this is necessary to battle the increasing startup times of numba-stats. Now you only pay the compilation cost for the distribution that you actually import. The stats submodule will be removed. To keep old code running, please pin your numba_stats to version <1.

numba-stats and numba-scipy

numba-scipy is the official package and repository for fast numba-accelerated scipy functions, are we reinventing the wheel?

Ideally, the functionality in this package should be in numba-scipy and we hope that eventually this will be case. In this package, we don't offer overloads for scipy functions and classes like numba-scipy does. This simplifies the implementation dramatically. numba-stats is intended as a temporary solution until fast statistical functions are included in numba-scipy. numba-stats currently does not depend on numba-scipy, only on numba and scipy.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numba-stats-0.10.1.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

numba_stats-0.10.1-py3-none-any.whl (14.8 kB view details)

Uploaded Python 3

File details

Details for the file numba-stats-0.10.1.tar.gz.

File metadata

  • Download URL: numba-stats-0.10.1.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for numba-stats-0.10.1.tar.gz
Algorithm Hash digest
SHA256 36907f1748edf9402e338fd309e7fe3481d28666a4206592fb5ef56a42a7bb85
MD5 6d95b219cb7f62745703e9087ecfc6c6
BLAKE2b-256 3af1ede1687cff4f210bacd27b79f1a0530adb3a353861083705ef5fdde7ef06

See more details on using hashes here.

File details

Details for the file numba_stats-0.10.1-py3-none-any.whl.

File metadata

  • Download URL: numba_stats-0.10.1-py3-none-any.whl
  • Upload date:
  • Size: 14.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for numba_stats-0.10.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8f45ee2c5346c94a543184669c56176cf1397bd60a32ee124d6df1977142b23b
MD5 ec3476db8f38269b5f9865f294ec6a29
BLAKE2b-256 10e5a54d11cb01f5ae7a1fe8db694b3d61c49ab046407172e68ebda2946484e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page