Skip to main content

compiling Python code using LLVM

Project description

Numba is an Open Source NumPy-aware optimizing compiler for Python sponsored by Anaconda, Inc. It uses the remarkable LLVM compiler infrastructure to compile Python syntax to machine code.

It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code will be translated to Python C-API calls effectively removing the “interpreter” but not removing the dynamic indirection.

Numba is also not a tracing JIT. It compiles your code before it gets run either using run-time type information or type information you provide in the decorator.

Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy.

Dependencies

  • llvmlite

  • numpy (version 1.9 or higher)

  • funcsigs (for Python 2)

Installing

The easiest way to install numba and get updates is by using the Anaconda Distribution: https://www.anaconda.com/download

$ conda install numba

If you wanted to compile Numba from source, it is recommended to use conda environment to maintain multiple isolated development environments. To create a new environment for Numba development:

$ conda create -p ~/dev/mynumba python numpy llvmlite

To select the installed version, append “=VERSION” to the package name, where, “VERSION” is the version number. For example:

$ conda create -p ~/dev/mynumba python=2.7 numpy=1.9 llvmlite

to use Python 2.7 and Numpy 1.9.

If you need CUDA support, you should also install the CUDA toolkit:

$ conda install cudatoolkit

This installs the CUDA Toolkit version 7.5, which requires driver version 352.79 or later to be installed.

Custom Python Environments

If you’re not using conda, you will need to build llvmlite yourself:

Building and installing llvmlite

See https://github.com/numba/llvmlite for the most up-to-date instructions. You will need a build of LLVM 5.0.x.

$ git clone https://github.com/numba/llvmlite
$ cd llvmlite
$ python setup.py install

Installing Numba

$ git clone https://github.com/numba/numba.git
$ cd numba
$ pip install -r requirements.txt
$ python setup.py build_ext --inplace
$ python setup.py install

or simply

$ pip install numba

If you want to enable CUDA support, you will need to install CUDA Toolkit 7.5. After installing the toolkit, you might have to specify environment variables in order to override the standard search paths:

NUMBAPRO_CUDA_DRIVER

Path to the CUDA driver shared library

NUMBAPRO_NVVM

Path to the CUDA libNVVM shared library file

NUMBAPRO_LIBDEVICE

Path to the CUDA libNVVM libdevice directory which contains .bc files

Documentation

http://numba.pydata.org/numba-doc/dev/index.html

Mailing Lists

Join the numba mailing list numba-users@continuum.io: https://groups.google.com/a/continuum.io/d/forum/numba-users

or access it through the Gmane mirror: http://news.gmane.org/gmane.comp.python.numba.user

Some old archives are at: http://librelist.com/browser/numba/

Website

See if our sponsor can help you (which can help this project): https://www.anaconda.com

http://numba.pydata.org

Continuous Integration

https://travis-ci.org/numba/numba

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numba-0.36.1.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

numba-0.36.1-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

numba-0.36.1-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

numba-0.36.1-cp36-cp36m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m

numba-0.36.1-cp36-cp36m-manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.6m

numba-0.36.1-cp36-cp36m-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

numba-0.36.1-cp35-cp35m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.5m Windows x86-64

numba-0.36.1-cp35-cp35m-win32.whl (1.5 MB view details)

Uploaded CPython 3.5m Windows x86

numba-0.36.1-cp35-cp35m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.5m

numba-0.36.1-cp35-cp35m-manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.5m

numba-0.36.1-cp35-cp35m-macosx_10_6_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.5m macOS 10.6+ x86-64

numba-0.36.1-cp27-cp27mu-manylinux1_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7mu

numba-0.36.1-cp27-cp27mu-manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 2.7mu

numba-0.36.1-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

numba-0.36.1-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

numba-0.36.1-cp27-cp27m-macosx_10_6_x86_64.whl (1.4 MB view details)

Uploaded CPython 2.7m macOS 10.6+ x86-64

File details

Details for the file numba-0.36.1.tar.gz.

File metadata

  • Download URL: numba-0.36.1.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numba-0.36.1.tar.gz
Algorithm Hash digest
SHA256 a3b7540713c39f4d7a8d3b18cd49249c6356a35ee1ab5e15a89f7cf970004f0a
MD5 0d67200339fd6a9d4fbc867678d31f5c
BLAKE2b-256 af98995952457f8cb60892644dc252ea56f30e3ad0ee5561b7829c8480aee81d

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d33c8a934972202a1c999efd2e92ad7e33c385ca5a609a391f45527818972d78
MD5 d2457bd89f5a0b6bba6c2aa762b32def
BLAKE2b-256 9cbb8b3594f870b65f015894b9d02191617143360abc28ed230e503b34f43bdb

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 18e4c35dc800b692d6bbc143e93d2413942ea7b3026e736b0decbd980ee1f74d
MD5 8444a5d07ca331fd70f7fb51dc04732e
BLAKE2b-256 c116484debdfffebe17f2502104c81ee4674d7c47d83152d02008d9bfb9930bc

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 448fb588b5652ec7556e7aeb5888e876c5ce9641ad2ba3f0448ca5c4f4a4ce43
MD5 6870a292dcfa1f1e1f911af1d2cec0ed
BLAKE2b-256 a413deee9a59f25401892bb1fbf08e1fe90b1f420ae2aca2fccbb99386c1a7be

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cb32482554f14b67b8b2bfdcbbeba84768c583ba5384d1320bb0db7900e0b000
MD5 61064286e630abb36cb6d46a67586a66
BLAKE2b-256 b28eec9f54341d0505594317f341a11927cbdb58f1e6316c5b1ba7ec0816357e

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2708d51c8ef99ea234a66365b17e6c70f6734d15c339318189854b499d1a9ec8
MD5 e018cae15efecc412e116429a953f073
BLAKE2b-256 bd8e09617d2895746271f5d8ec09a66bb36e0e563a276eabd24a96c85910d1a6

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 877f2080b9886e2f081437105e7c55d2308e871359f3867954aa32235fd9dd91
MD5 4c894c904b83f4c22ee0cc1818646121
BLAKE2b-256 9cc7112bbc0cfd8259fa53f02fc25dfaac527b4b6bb371f769378b04d244447e

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 f30e3958fd30c0567333591ada6372d742604858c8b421a67c80477c6a059bbf
MD5 a1cc82b07520008c29092fcdbe70014c
BLAKE2b-256 acd2fd493963495aaaf1d348674fdaa6b013c100e1d0b8a8cdbe5cb247d671b0

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 975b26f1f28c0d7affd9266fdd84ae51cc44b4821f5be42330bc0e900a53fe2e
MD5 d191140c89414714fd25848386194b98
BLAKE2b-256 c96e396c7d08316da4c616b954b60a159498ef43ca0592be02eb0f99ea7cd076

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c31822dab2ccd467aaa9cc99d15aced355c94c1c769de0d86f24428d92759ded
MD5 c10af670f56c566a7ff0beb3c0fb7f9c
BLAKE2b-256 9007d0104bf31cac9063e4569d319be1b811de466a09214a225540f37379390b

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp35-cp35m-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp35-cp35m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 a1022894edcb16363fd81414a3f95c579885957ce34713c43687d1d947989b6b
MD5 b0affd33b0679ae79abae2d96ece1ebb
BLAKE2b-256 7e140f513bbc717fa0000195d7f200476cb21a85ae1ec64a0c066221f55cbfb6

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b40e51380de1aedc23a6a290ffb4281ee7eee35783a287b12902c35ac8e5a892
MD5 3b960a90f6eec4f0fbc0854506a0a8ce
BLAKE2b-256 61af018367679cc887fd5a4bb5f7c42979eeba78de156caab9951163394c15bd

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bb15c2032340e0fe528228668418046d244bb6c1932a267f80c7ba42bca25278
MD5 92b0ce1ea901e0371d531c04fd6f77f4
BLAKE2b-256 0db86cb223974578dda476933e630f6caa913830eef22edfa2858f0626fc1700

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 04c06912064bf1ba1f52e05501acf9fde73a0ac9e95360f075049bf4e0528c0d
MD5 035bfc454e41f03fe37c59f8ca5082b4
BLAKE2b-256 ce3f79623af108ece6fe2c1d86a1c413fb0abf8d1410a64d29133d2be56f2318

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 db56513b9b2f6d6f84012c98f94d0d0b563cc04cc693ef92c758280c69a812b4
MD5 6874aa7b2cf387ff994e83821f006e46
BLAKE2b-256 6c5936592ef7ee8033d998d58e5d94ab2d3d202b6f4e28ee02709d1fdbe2be36

See more details on using hashes here.

File details

Details for the file numba-0.36.1-cp27-cp27m-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.36.1-cp27-cp27m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 68836ae7ec46bab8d6ddc70919dceaaf08d87a57c351fcf4d4bf54c82f6c5467
MD5 6045ce5a652b6a7730be654a0fb9f410
BLAKE2b-256 55a60357fcc173ac738dd929076c146e8fdd3a5add34ee00fc556689285afee7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page