Skip to main content

compiling Python code using LLVM

Project description

Gitter

A compiler for Python array and numerical functions

Numba is an Open Source NumPy-aware optimizing compiler for Python sponsored by Anaconda, Inc. It uses the remarkable LLVM compiler infrastructure to compile Python syntax to machine code.

It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code will be translated to Python C-API calls effectively removing the “interpreter” but not removing the dynamic indirection.

Numba is also not a tracing JIT. It compiles your code before it gets run either using run-time type information or type information you provide in the decorator.

Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy.

Dependencies

  • llvmlite

  • numpy (version 1.9 or higher)

  • funcsigs (for Python 2)

Installing

The easiest way to install numba and get updates is by using the Anaconda Distribution: https://www.anaconda.com/download

$ conda install numba

If you wanted to compile Numba from source, it is recommended to use conda environment to maintain multiple isolated development environments. To create a new environment for Numba development:

$ conda create -p ~/dev/mynumba python numpy llvmlite

To select the installed version, append “=VERSION” to the package name, where, “VERSION” is the version number. For example:

$ conda create -p ~/dev/mynumba python=2.7 numpy=1.9 llvmlite

to use Python 2.7 and Numpy 1.9.

If you need CUDA support, you should also install the CUDA toolkit:

$ conda install cudatoolkit

This installs the CUDA Toolkit version 7.5, which requires driver version 352.79 or later to be installed.

Custom Python Environments

If you’re not using conda, you will need to build llvmlite yourself:

Building and installing llvmlite

See https://github.com/numba/llvmlite for the most up-to-date instructions. You will need a build of LLVM 5.0.x.

$ git clone https://github.com/numba/llvmlite
$ cd llvmlite
$ python setup.py install
Installing Numba
$ git clone https://github.com/numba/numba.git
$ cd numba
$ pip install -r requirements.txt
$ python setup.py build_ext --inplace
$ python setup.py install

or simply

$ pip install numba

If you want to enable CUDA support, you will need to install CUDA Toolkit 7.5. After installing the toolkit, you might have to specify environment variables in order to override the standard search paths:

NUMBAPRO_CUDA_DRIVER

Path to the CUDA driver shared library

NUMBAPRO_NVVM

Path to the CUDA libNVVM shared library file

NUMBAPRO_LIBDEVICE

Path to the CUDA libNVVM libdevice directory which contains .bc files

Documentation

http://numba.pydata.org/numba-doc/dev/index.html

Mailing Lists

Join the numba mailing list numba-users@continuum.io: https://groups.google.com/a/continuum.io/d/forum/numba-users

or access it through the Gmane mirror: http://news.gmane.org/gmane.comp.python.numba.user

Some old archives are at: http://librelist.com/browser/numba/

Website

See if our sponsor can help you (which can help this project): https://www.anaconda.com

http://numba.pydata.org

Continuous Integration

https://travis-ci.org/numba/numba

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numba-0.37.0.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

numba-0.37.0-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

numba-0.37.0-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

numba-0.37.0-cp36-cp36m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m

numba-0.37.0-cp36-cp36m-manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.6m

numba-0.37.0-cp36-cp36m-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

numba-0.37.0-cp35-cp35m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.5m Windows x86-64

numba-0.37.0-cp35-cp35m-win32.whl (1.5 MB view details)

Uploaded CPython 3.5m Windows x86

numba-0.37.0-cp35-cp35m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.5m

numba-0.37.0-cp35-cp35m-manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.5m

numba-0.37.0-cp35-cp35m-macosx_10_6_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.5m macOS 10.6+ x86-64

numba-0.37.0-cp27-cp27mu-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 2.7mu

numba-0.37.0-cp27-cp27mu-manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 2.7mu

numba-0.37.0-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

numba-0.37.0-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

numba-0.37.0-cp27-cp27m-macosx_10_6_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.6+ x86-64

File details

Details for the file numba-0.37.0.tar.gz.

File metadata

  • Download URL: numba-0.37.0.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numba-0.37.0.tar.gz
Algorithm Hash digest
SHA256 c62121b2d384d8b4d244ef26c1cf8bb5cb819278a80b893bf41918ad6d391258
MD5 8b6f6868a0cab320651292a0603e8105
BLAKE2b-256 fc7ff9156ce23baa6b5088e4265e6cc7be23ca6ce31cf72cb5130ef5a17c0fac

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 946ba96b4a3c7071c5b2fe62a9a84aeda8cd47d0e64c78b0fed40bf070cb133b
MD5 6b1246e448c3e3d533ac500ca9366887
BLAKE2b-256 15288237155d33d34da5341b7b2f46559b978c9742ee19a771bc573fb783e821

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 691a9c6a3bd7ef778c529900cb86afd013f3e8bff8cfd3032fbd25fb98b505ee
MD5 f17db78d468df676ec1326bf5e55a716
BLAKE2b-256 950ad78e3fbbfc1c25db5dc82edb4fe25b2b1488812546cbd08ce4b4e91f903f

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b4f98a2f1ac7ea35a76e012918ecbbd91f287b3b9f1388f4f0390f276f30da9f
MD5 c4550288766f8eeab0b26c6e47e52e60
BLAKE2b-256 090e8781b57d3824feaa5a5e7bb0f590b71bde7d2002d060aff1ac04214b58c8

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d3df797bcf6dc269b37ca31bb9c784a5cb99d36c0e1a75c4746ac9a8ec8f443a
MD5 6678bd9b804974d7a06c1bb03199dd26
BLAKE2b-256 ba34bbcb91032ed92be3c4ff07af4cfdf06eb551709c2892c5097afb2ee739db

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 25559836e3511fb11a13217b5200ca00492fb96ec09f8e5b2f31c87b5a49d259
MD5 e2d9f2096de300551a499293008da2ca
BLAKE2b-256 5749df1a47b0337df0c6b058b964f121ec513e536367d0a0a4437331d8025a02

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 caafcb228ac3eb1ec0d26b50911d6333009ec2d356da4a88ff1d572d7f91662d
MD5 a211ac4190a27574e33f38f9be1124af
BLAKE2b-256 03b0e0aaf4398f5ddf62df7423cff76669545febb4133dd69caf1a260dc142a1

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 fc88d72b283ef6f12eeabe05b1f2b2c50b6470d9e416bbddcced02a21d50694f
MD5 19174e394ed09597a21edbb32bf7f0a9
BLAKE2b-256 66155c4a9a72de5a38d9d0d2755924161ceed7541ae8197b73d171d6f04643b3

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 62403b5b3b67a86d4927965ea49b8d65c7f99b58c537b8e06e7e273ee6bcdb11
MD5 48703a75c537a0d514af576a7683763f
BLAKE2b-256 5fbd7afee6ad9847fb1e6dc6378a77d87ebb1db448d5086fe2233a1827df1457

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8d75eba03a24432b7a9a80abd25356ed0bbfcb25cccfee4adc8db095a50e817b
MD5 05063afea9572b58220117ca5576bc7c
BLAKE2b-256 6530b1265bf02d84a434983e58671968ce47b7588878193a3cf240fa7a4bb851

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp35-cp35m-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp35-cp35m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 a9fd3f4846136621ce488a8e45533d28269972bd819cd996605e887002954446
MD5 d115ef5f5b54122bf56e8c1943312570
BLAKE2b-256 7fec213f9359f363c44e3d45f5b6aa5b10150766d1c32378aca89564a793a078

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f8d1caaa871f4a06e7bfe1a67c4f9381b6e6538390eb48be7e6f7832a48eea52
MD5 3912fdc46aeb5235adb11002600b505f
BLAKE2b-256 e6ad9250267a1aa892fb23e9a8b55224179cca9bdcbbd3083800fd493eecd0af

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 34b3d58b403ad01789d4954db7792fb8610f946ac60ba5b5707870d42626dfe2
MD5 263ded2beac75bff436540030216a43e
BLAKE2b-256 312e555955d56aa5c7e843217832070052782b1b19bbf1aae6e6fd7719340928

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 69b503f049df7823bb9a7f0db9234492d91fe79534ce6faaded74577f8c6f593
MD5 23c2feda80aac22b5a5d288c62aaa65c
BLAKE2b-256 0299d45618d7abb481244dba1687eb79b940dacebd289956dfeff3736e13fee1

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 d271017dcf51097ad18ef77f29014948eb7e7bd7b0add677d193c4f86d895f31
MD5 48274381a96a7636bf69710263b8477a
BLAKE2b-256 2e9660bb2cb0d3515cbdfd7d6d33222ab7cdadfcdeec541f2d5c720b92614a96

See more details on using hashes here.

File details

Details for the file numba-0.37.0-cp27-cp27m-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.37.0-cp27-cp27m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 820db406d874a8ad309688124d44f22263b961d944b7dfb933a7507c342bdb5f
MD5 b69edb5c51dc7245a792e703f9b3d520
BLAKE2b-256 216526ee33cc61212ca9fce3d590e98a645943c2b8507636904a7683044a4b15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page