Skip to main content

compiling Python code using LLVM

Project description

Gitter

A compiler for Python array and numerical functions

Numba is an Open Source NumPy-aware optimizing compiler for Python sponsored by Anaconda, Inc. It uses the remarkable LLVM compiler infrastructure to compile Python syntax to machine code.

It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code will be translated to Python C-API calls effectively removing the “interpreter” but not removing the dynamic indirection.

Numba is also not a tracing JIT. It compiles your code before it gets run either using run-time type information or type information you provide in the decorator.

Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy.

Dependencies

  • llvmlite

  • numpy (version 1.9 or higher)

  • funcsigs (for Python 2)

Installing

The easiest way to install numba and get updates is by using the Anaconda Distribution: https://www.anaconda.com/download

$ conda install numba

If you wanted to compile Numba from source, it is recommended to use conda environment to maintain multiple isolated development environments. To create a new environment for Numba development:

$ conda create -p ~/dev/mynumba python numpy llvmlite

To select the installed version, append “=VERSION” to the package name, where, “VERSION” is the version number. For example:

$ conda create -p ~/dev/mynumba python=2.7 numpy=1.9 llvmlite

to use Python 2.7 and Numpy 1.9.

If you need CUDA support, you should also install the CUDA toolkit:

$ conda install cudatoolkit

This installs the CUDA Toolkit version 8.0, which requires driver version 375.x or later to be installed.

Custom Python Environments

If you’re not using conda, you will need to build llvmlite yourself:

Building and installing llvmlite

See https://github.com/numba/llvmlite for the most up-to-date instructions. You will need a build of LLVM 6.0.x.

$ git clone https://github.com/numba/llvmlite
$ cd llvmlite
$ python setup.py install
Installing Numba
$ git clone https://github.com/numba/numba.git
$ cd numba
$ pip install -r requirements.txt
$ python setup.py build_ext --inplace
$ python setup.py install

or simply

$ pip install numba

If you want to enable CUDA support, you will need to install CUDA Toolkit 8.0. After installing the toolkit, you might have to specify environment variables in order to override the standard search paths:

NUMBAPRO_CUDA_DRIVER

Path to the CUDA driver shared library

NUMBAPRO_NVVM

Path to the CUDA libNVVM shared library file

NUMBAPRO_LIBDEVICE

Path to the CUDA libNVVM libdevice directory which contains .bc files

Documentation

http://numba.pydata.org/numba-doc/dev/index.html

Mailing Lists

Join the numba mailing list numba-users@continuum.io: https://groups.google.com/a/continuum.io/d/forum/numba-users

or access it through the Gmane mirror: http://news.gmane.org/gmane.comp.python.numba.user

Some old archives are at: http://librelist.com/browser/numba/

Website

See if our sponsor can help you (which can help this project): https://www.anaconda.com

http://numba.pydata.org

Continuous Integration

https://travis-ci.org/numba/numba

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numba-0.39.0.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

numba-0.39.0-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

numba-0.39.0-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

numba-0.39.0-cp37-cp37m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m

numba-0.39.0-cp37-cp37m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m

numba-0.39.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

numba-0.39.0-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

numba-0.39.0-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

numba-0.39.0-cp36-cp36m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m

numba-0.39.0-cp36-cp36m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m

numba-0.39.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

numba-0.39.0-cp35-cp35m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.5m Windows x86-64

numba-0.39.0-cp35-cp35m-win32.whl (1.5 MB view details)

Uploaded CPython 3.5m Windows x86

numba-0.39.0-cp35-cp35m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.5m

numba-0.39.0-cp35-cp35m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.5m

numba-0.39.0-cp35-cp35m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

numba-0.39.0-cp27-cp27mu-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 2.7mu

numba-0.39.0-cp27-cp27mu-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 2.7mu

numba-0.39.0-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

numba-0.39.0-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

numba-0.39.0-cp27-cp27m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file numba-0.39.0.tar.gz.

File metadata

  • Download URL: numba-0.39.0.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numba-0.39.0.tar.gz
Algorithm Hash digest
SHA256 07749d1ddac8c4c0ce8b22bf3dec52ef2fd4922174c71447126807f5f8dc2bae
MD5 224f3ff6db9317a3eccdb23d4273886a
BLAKE2b-256 a4cd48b7f2372d73fd11837be565576f5a7bebf8373c75bbec4f90f0b43480a4

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b26017ada41fba940df380eabfe088c232d10d57ce9eb905555df931907e36f0
MD5 78f6060089beb629040d2136e0ab2092
BLAKE2b-256 73b05fda607dc9220f976eee5d1c2e334ed6594f6699415095d9e6fa2eab4c2c

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 be49190c02226a3a5253f10d9e22af5f0b7272895852ef3a7fdb5e84601a1df1
MD5 696790490c4930ea0e7859e83ad5ba65
BLAKE2b-256 a634a373df714b877dfe032d45231365a675e4608cdf36cc7c3c3c885e459fa9

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 765a818a38812405c3af096e78078a0b246ff26c01a8b8ed1b7b7de3d28bbf12
MD5 9366c5b36dcc4ff84a907b248ada3c0b
BLAKE2b-256 bb88d55059446fbf6838128ad6838b66e71defe6a6f10ad96969812543484c8a

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3daae0b609b18b305fa8952b1a5137ecbf1946136d960749da91280b2dc934a2
MD5 e31375b2af8489c2a0d77f423e973942
BLAKE2b-256 a2ca8545eeab649b2ad0a377a2ff4cd35fb78812fdfbafcaac6d1e1de6617ef3

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ac61d95a76904741f6024c2860d4b793e2cfd456947fa21c455398f2aad6245c
MD5 2b9549b943046fed923210aaf7f0b8fd
BLAKE2b-256 06cd6b49cc0f022dd64dfe5f0cc5aa95b6ac46c01f0242b2b4b2894cb9cca563

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 52dc8aa38ec07dd84df3239a2655d807c764313b3ac003ea409d176254a2b278
MD5 69a35ab9f4ce26eb576c7b285e183ed2
BLAKE2b-256 405725014cff861a615a10a674c306b6fe2184e43c37a85a83874675e41d2099

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 f2464d358a30c0b00a93523a728a3f6aafe6dc8e85cad35814a1f11f8d163d2f
MD5 c3a9913026a573e2bf8179373ca141b4
BLAKE2b-256 8b50cf2423ed4d4d7f35d26c83873dda943d85f123e1adf5e555560ccebfc2e7

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a243416844c942f62b7760d4d3b8450e7dc6d11f144b77e8030695c0ee27c3eb
MD5 c94308b62bb0edd081b6c1f330ec7865
BLAKE2b-256 24896f1755892d60ddd528090dc313349e7cc491170d6737f6b3a7a5b317ef81

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3a035de250a1b1f4c9332092a3caabb0f9fd527e027483e6d02edc4a160fc174
MD5 c31030952a282296fd03fabea870df2f
BLAKE2b-256 5796add5ab5e10ca489b43b9b3307c5a98533a044d950b20ed58268a488af0f5

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 71723a5bdcffe6a570c019d75234ca68d47d4f2e56ee1654fb30a7e5342e80aa
MD5 3bfcb953a6fee0261f7dbb9f1f082366
BLAKE2b-256 fcf61555a24d032c1ebe6db3e92796d5846e7d5b4337eeb53439d95fb4694fc2

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 628d26df7e39e2dc924b3aceb41d023a7d0b9772afdbce1e42ef18e3b6acbfcf
MD5 57b09c1029f9a220b52c5c375bd7558e
BLAKE2b-256 aaac124fe0c1ad1ff7cbe0311352b545a142927583ffb44f57585d6a40b3f5a6

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 afd26fffd0b310509d2d24def3ff7460bd1c5100ccc49d7ec051a75e34f07329
MD5 9f8e60d9189e36dbb22d811819dba1b1
BLAKE2b-256 eb10b73d17c597108e70331dd9f82ce0ff3c364a2b7abbb557b42afb58971f56

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8ad7d73e1410266c17c4c201401799dc759bcc7c858c9922aa1938667b4ff322
MD5 363788230b53a58f05ef7467788b7a9f
BLAKE2b-256 2fa0b2bf6960318e6d4d1989cb535bc8fcb765e2cffe3a65298b8e5c22a7cc1f

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5050223d1539af9ea9ed89b71b3eebdf01e0549b101328a7d5450314a9410d5f
MD5 ca38cd5295d92e91a3648501e5cefd85
BLAKE2b-256 38713f2a2deff447d05feaf9e8f3cf9dd3983bfaa715a9590c00e77a8f67d7a6

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4aebb89e4c7438cd897b2014d47a4eb09cca6606e8de0f82178a80b0f76bcacd
MD5 5abe050b39ff4ad7abb6047d349892ae
BLAKE2b-256 9375e30212062214374e3b0bd9a794a75e53f67e5b8cd9270f77b231c1ea0bc3

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fbdab1f7085485727ffa9dbcf5e968e025474bde730542464e8e51152dd0fe8b
MD5 932ba81e2e8c655e2b4da3dd8091c446
BLAKE2b-256 94437942205d25463653ae3b0ad993882a8d9e33d55021bd2d3294da8d2a378f

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7f5bfab40dff26bd23fc5d4e482840bcf64c50126013a03fbdcdc13fc1d13d48
MD5 89414969cd0ba7d022ae4abe8882874e
BLAKE2b-256 b52de0f1ee38d59c5dd3646815093d66d2c74e837e8648c848ab61f2db466932

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 c379f1a379883ba5a4cc76b751b367e9a3770fc08d366a540ba2520cd56e3350
MD5 0bb04e83c4b169393e88ca083112e8bf
BLAKE2b-256 bc94b1d8347c466cd86e9722ccea83bfacb1b4ef55881a79025a07a576f9729d

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 44b2d2430f4f022bbf61cf4e3cd8319aa01b9bc253ce2671c84237e0c8c1b386
MD5 d90bc3b4f49e21be9d72bc34d0cf292f
BLAKE2b-256 a93847f04afd48e7b724b1a428ac10052eca9d8ffa804b55c58700864b6e6d52

See more details on using hashes here.

File details

Details for the file numba-0.39.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numba-0.39.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 91b124506439aaa57fd1313c1f1506cd439b300e066af9696ede716a8803cf49
MD5 c295cbbf7303ef4151fb84af66b34d38
BLAKE2b-256 621d69e7627e17fbfe5ff8b11c75256685e8cfbc56d089ca04624774b0ffefd3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page