Skip to main content

Fast N-dimensional aggregation functions with Numba

Project description

Numbagg: Fast N-dimensional aggregation functions with Numba

GitHub Workflow CI Status PyPI Version

Fast, flexible N-dimensional array functions written with Numba and NumPy's generalized ufuncs.

Currently accelerated functions:

  • Array functions: allnan, anynan, count, nanargmax, nanargmin, nanmax, nanmean, nanstd, nanvar, nanmin, nansum
  • Moving window functions: move_exp_nanmean, move_mean, move_sum

Note: Only functions listed here (exposed in Numbagg's top level namespace) are supported as part of Numbagg's public API.

Easy to extend

Numbagg makes it easy to write, in pure Python/NumPy, flexible aggregation functions accelerated by Numba. All the hard work is done by Numba's JIT compiler and NumPy's gufunc machinery (as wrapped by Numba).

For example, here is how we wrote nansum:

import numpy as np
from numbagg.decorators import ndreduce

@ndreduce
def nansum(a):
    asum = 0.0
    for ai in a.flat:
        if not np.isnan(ai):
            asum += ai
    return asum

You are welcome to experiment with Numbagg's decorator functions, but these are not public APIs (yet): we reserve the right to change them at any time.

We'd rather get your pull requests to add new functions into Numbagg directly!

Advantages over Bottleneck

  • Way less code. Easier to add new functions. No ad-hoc templating system. No Cython!
  • Fast functions still work for >3 dimensions.
  • axis argument handles tuples of integers.

Most of the functions in Numbagg (including our test suite) are adapted from Bottleneck's battle-hardened implementations. Still, Numbagg is experimental, and probably not yet ready for production.

Benchmarks

Initial benchmarks are quite encouraging. Numbagg/Numba has comparable (slightly better) performance than Bottleneck's hand-written C:

import numbagg
import numpy as np
import bottleneck

x = np.random.RandomState(42).randn(1000, 1000)
x[x < -1] = np.NaN

# timings with numba=0.41.0 and bottleneck=1.2.1

In [2]: %timeit numbagg.nanmean(x)
1.8 ms ± 92.3 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [3]: %timeit numbagg.nanmean(x, axis=0)
3.63 ms ± 136 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [4]: %timeit numbagg.nanmean(x, axis=1)
1.81 ms ± 41 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [5]: %timeit bottleneck.nanmean(x)
2.22 ms ± 119 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [6]: %timeit bottleneck.nanmean(x, axis=0)
4.45 ms ± 107 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [7]: %timeit bottleneck.nanmean(x, axis=1)
2.19 ms ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Our approach

Numbagg includes somewhat awkward workarounds for features missing from NumPy/Numba:

I hope that the need for most of these will eventually go away. In the meantime, expect Numbagg to be tightly coupled to Numba and NumPy release cycles.

License

3-clause BSD. Includes portions of Bottleneck, which is distributed under a Simplified BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numbagg-0.2.1.tar.gz (20.6 kB view details)

Uploaded Source

Built Distribution

numbagg-0.2.1-py2.py3-none-any.whl (18.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file numbagg-0.2.1.tar.gz.

File metadata

  • Download URL: numbagg-0.2.1.tar.gz
  • Upload date:
  • Size: 20.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for numbagg-0.2.1.tar.gz
Algorithm Hash digest
SHA256 c9534ce94ddfe97198c2a4b8a3179329678eb7d7628abef40feb5de9a1060ce9
MD5 20d0920e9af30a17b8493fc2ab54a353
BLAKE2b-256 4f60392b5130dcf976488ec034ac0a689b167e3111105d3860ed325e712ed48f

See more details on using hashes here.

File details

Details for the file numbagg-0.2.1-py2.py3-none-any.whl.

File metadata

  • Download URL: numbagg-0.2.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 18.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for numbagg-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e9f5fc42cd098075a43f04cd1977769f98f6423c9bb2cae0a3203b93c67c2f35
MD5 5a01f7012ae03113c324d28a038b3e6d
BLAKE2b-256 de0294c502051c3ecff1e5afaffa16016c532b439a9223cc882be85548b02a8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page