Fast N-dimensional aggregation functions with Numba
Project description
Numbagg: Fast N-dimensional aggregation functions with Numba
Fast, flexible N-dimensional array functions written with Numba and NumPy's generalized ufuncs.
Currently accelerated functions:
- Array functions:
allnan
,anynan
,count
,nanargmax
,nanargmin
,nanmax
,nanmean
,nanstd
,nanvar
,nanmin
,nansum
,nanquantile
,ffill
,bfill
. - Grouped functions:
group_nanall
,group_nanany
,group_nanargmax
,group_nanargmin
,group_nancount
,group_nanfirst
,group_nanlast
,group_nanmax
,group_nanmean
,group_nanmin
,group_nanprod
,group_nanstd
,group_nansum
,group_nansum_of_squares
,group_nanvar
. - Moving window functions listed below
- Exponentially weighted moving functions listed below
Why use numba?
Performance
- Much faster than pandas for almost every function — 2-20x
- About the same speed as bottleneck on a single calculation
- Much faster than bottleneck — 4-7x — when parallelizing with multiple cores — for example, calculating over each row on an array with 10 rows.
- ...though numbagg's functions are JIT compiled, so they're much slower on their first run
Versatility
- More functions (though bottleneck has some functions we don't have, and pandas' functions have many more parameters)
- Fast functions work for >3 dimensions. Functions take an arbitrary axis or tuple of axes to calculate over
- Written in numba — way less code, simple to inspect, simple to improve
Benchmarks
2D
Array of shape (1, 10000000)
, over the final axis
func | numbagg | pandas | bottleneck | pandas_ratio | bottleneck_ratio |
---|---|---|---|---|---|
bfill |
17ms | 504ms | 20ms | 29.10x | 1.13x |
ffill |
18ms | 489ms | 19ms | 27.88x | 1.06x |
move_corr |
48ms | 922ms | n/a | 19.23x | n/a |
move_cov |
42ms | 653ms | n/a | 15.50x | n/a |
move_mean |
32ms | 131ms | 27ms | 4.12x | 0.86x |
move_std |
24ms | 190ms | 38ms | 7.86x | 1.57x |
move_sum |
31ms | 118ms | 27ms | 3.83x | 0.88x |
move_var |
24ms | 177ms | 35ms | 7.41x | 1.48x |
move_exp_nancorr |
69ms | 455ms | n/a | 6.63x | n/a |
move_exp_nancount |
32ms | 83ms | n/a | 2.59x | n/a |
move_exp_nancov |
51ms | 283ms | n/a | 5.58x | n/a |
move_exp_nanmean |
33ms | 72ms | n/a | 2.17x | n/a |
move_exp_nanstd |
48ms | 95ms | n/a | 1.98x | n/a |
move_exp_nansum |
32ms | 64ms | n/a | 1.97x | n/a |
move_exp_nanvar |
42ms | 82ms | n/a | 1.97x | n/a |
nanquantile |
218ms | 680ms | n/a | 3.12x | n/a |
ND
Array of shape (100, 1000, 1000)
, over the final axis
func | numbagg | pandas | bottleneck | pandas_ratio | bottleneck_ratio |
---|---|---|---|---|---|
bfill |
38ms | n/a | 244ms | n/a | 6.38x |
ffill |
50ms | n/a | 221ms | n/a | 4.44x |
move_corr |
130ms | n/a | n/a | n/a | n/a |
move_cov |
69ms | n/a | n/a | n/a | n/a |
move_mean |
51ms | n/a | 308ms | n/a | 6.06x |
move_std |
106ms | n/a | 372ms | n/a | 3.51x |
move_sum |
59ms | n/a | 287ms | n/a | 4.90x |
move_var |
44ms | n/a | 370ms | n/a | 8.50x |
move_exp_nancorr |
136ms | n/a | n/a | n/a | n/a |
move_exp_nancount |
119ms | n/a | n/a | n/a | n/a |
move_exp_nancov |
124ms | n/a | n/a | n/a | n/a |
move_exp_nanmean |
158ms | n/a | n/a | n/a | n/a |
move_exp_nanstd |
94ms | n/a | n/a | n/a | n/a |
move_exp_nansum |
215ms | n/a | n/a | n/a | n/a |
move_exp_nanvar |
160ms | n/a | n/a | n/a | n/a |
nanquantile |
2179ms | n/a | n/a | n/a | n/a |
[^1][^2][^3]
[^1]: Benchmarks were run on a Mac M1 laptop in October 2023 on numbagg's HEAD, pandas 2.1.1, bottleneck 1.3.7. They're also run in CI, though without demonstrating the benefits of parallelization given GHA's CPU count.
[^2]: While we separate the setup and the running of the functions, pandas still needs to do some work to create its result dataframe, and numbagg does some checks in python which bottleneck does in C or doesn't do. So we focus on the benchmarks for larger arrays in order to reduce that impact. Any contributions to improve the benchmarks are welcome.
[^3]:
Pandas doesn't have an equivalent move_exp_nancount
function, so this is
compared to a function which uses its sum
function on an array of 1
s.
Full benchmarks
All
func | shape | size | numbagg | pandas | bottleneck | pandas_ratio | bottleneck_ratio |
---|---|---|---|---|---|---|---|
bfill |
(1, 1000) | 1000 | 0ms | 0ms | 0ms | 3.18x | 0.03x |
(10, 1000000) | 10000000 | 4ms | 74ms | 20ms | 20.56x | 5.64x | |
(1, 10000000) | 10000000 | 17ms | 504ms | 20ms | 29.10x | 1.13x | |
(10, 10, 10, 10, 1000) | 10000000 | 4ms | n/a | 21ms | n/a | 5.35x | |
(100, 1000, 1000) | 100000000 | 38ms | n/a | 244ms | n/a | 6.38x | |
ffill |
(1, 1000) | 1000 | 0ms | 0ms | 0ms | 2.52x | 0.01x |
(10, 1000000) | 10000000 | 4ms | 73ms | 19ms | 17.64x | 4.50x | |
(1, 10000000) | 10000000 | 18ms | 489ms | 19ms | 27.88x | 1.06x | |
(10, 10, 10, 10, 1000) | 10000000 | 4ms | n/a | 19ms | n/a | 4.60x | |
(100, 1000, 1000) | 100000000 | 50ms | n/a | 221ms | n/a | 4.44x | |
move_corr |
(1, 1000) | 1000 | 0ms | 0ms | n/a | 5.04x | n/a |
(10, 1000000) | 10000000 | 10ms | 927ms | n/a | 89.63x | n/a | |
(1, 10000000) | 10000000 | 48ms | 922ms | n/a | 19.23x | n/a | |
(10, 10, 10, 10, 1000) | 10000000 | 10ms | n/a | n/a | n/a | n/a | |
(100, 1000, 1000) | 100000000 | 130ms | n/a | n/a | n/a | n/a | |
move_cov |
(1, 1000) | 1000 | 0ms | 0ms | n/a | 4.64x | n/a |
(10, 1000000) | 10000000 | 9ms | 694ms | n/a | 76.55x | n/a | |
(1, 10000000) | 10000000 | 42ms | 653ms | n/a | 15.50x | n/a | |
(10, 10, 10, 10, 1000) | 10000000 | 9ms | n/a | n/a | n/a | n/a | |
(100, 1000, 1000) | 100000000 | 69ms | n/a | n/a | n/a | n/a | |
move_mean |
(1, 1000) | 1000 | 0ms | 0ms | 0ms | 1.43x | 0.02x |
(10, 1000000) | 10000000 | 7ms | 134ms | 27ms | 19.67x | 3.94x | |
(1, 10000000) | 10000000 | 32ms | 131ms | 27ms | 4.12x | 0.86x | |
(10, 10, 10, 10, 1000) | 10000000 | 5ms | n/a | 28ms | n/a | 5.32x | |
(100, 1000, 1000) | 100000000 | 51ms | n/a | 308ms | n/a | 6.06x | |
move_std |
(1, 1000) | 1000 | 0ms | 0ms | 0ms | 1.69x | 0.05x |
(10, 1000000) | 10000000 | 5ms | 185ms | 36ms | 33.95x | 6.56x | |
(1, 10000000) | 10000000 | 24ms | 190ms | 38ms | 7.86x | 1.57x | |
(10, 10, 10, 10, 1000) | 10000000 | 5ms | n/a | 37ms | n/a | 8.06x | |
(100, 1000, 1000) | 100000000 | 106ms | n/a | 372ms | n/a | 3.51x | |
move_sum |
(1, 1000) | 1000 | 0ms | 0ms | 0ms | 1.64x | 0.02x |
(10, 1000000) | 10000000 | 7ms | 125ms | 26ms | 17.60x | 3.68x | |
(1, 10000000) | 10000000 | 31ms | 118ms | 27ms | 3.83x | 0.88x | |
(10, 10, 10, 10, 1000) | 10000000 | 6ms | n/a | 26ms | n/a | 4.29x | |
(100, 1000, 1000) | 100000000 | 59ms | n/a | 287ms | n/a | 4.90x | |
move_var |
(1, 1000) | 1000 | 0ms | 0ms | 0ms | 1.55x | 0.05x |
(10, 1000000) | 10000000 | 5ms | 187ms | 35ms | 39.13x | 7.37x | |
(1, 10000000) | 10000000 | 24ms | 177ms | 35ms | 7.41x | 1.48x | |
(10, 10, 10, 10, 1000) | 10000000 | 20ms | n/a | 37ms | n/a | 1.90x | |
(100, 1000, 1000) | 100000000 | 44ms | n/a | 370ms | n/a | 8.50x | |
move_exp_nancorr |
(1, 1000) | 1000 | 0ms | 0ms | n/a | 6.90x | n/a |
(10, 1000000) | 10000000 | 13ms | 459ms | n/a | 35.88x | n/a | |
(1, 10000000) | 10000000 | 69ms | 455ms | n/a | 6.63x | n/a | |
(10, 10, 10, 10, 1000) | 10000000 | 14ms | n/a | n/a | n/a | n/a | |
(100, 1000, 1000) | 100000000 | 136ms | n/a | n/a | n/a | n/a | |
move_exp_nancount |
(1, 1000) | 1000 | 0ms | 0ms | n/a | 1.43x | n/a |
(10, 1000000) | 10000000 | 7ms | 73ms | n/a | 9.82x | n/a | |
(1, 10000000) | 10000000 | 32ms | 83ms | n/a | 2.59x | n/a | |
(10, 10, 10, 10, 1000) | 10000000 | 6ms | n/a | n/a | n/a | n/a | |
(100, 1000, 1000) | 100000000 | 119ms | n/a | n/a | n/a | n/a | |
move_exp_nancov |
(1, 1000) | 1000 | 0ms | 0ms | n/a | 6.49x | n/a |
(10, 1000000) | 10000000 | 10ms | 319ms | n/a | 31.23x | n/a | |
(1, 10000000) | 10000000 | 51ms | 283ms | n/a | 5.58x | n/a | |
(10, 10, 10, 10, 1000) | 10000000 | 10ms | n/a | n/a | n/a | n/a | |
(100, 1000, 1000) | 100000000 | 124ms | n/a | n/a | n/a | n/a | |
move_exp_nanmean |
(1, 1000) | 1000 | 0ms | 0ms | n/a | 1.26x | n/a |
(10, 1000000) | 10000000 | 6ms | 78ms | n/a | 12.63x | n/a | |
(1, 10000000) | 10000000 | 33ms | 72ms | n/a | 2.17x | n/a | |
(10, 10, 10, 10, 1000) | 10000000 | 7ms | n/a | n/a | n/a | n/a | |
(100, 1000, 1000) | 100000000 | 158ms | n/a | n/a | n/a | n/a | |
move_exp_nanstd |
(1, 1000) | 1000 | 0ms | 0ms | n/a | 2.09x | n/a |
(10, 1000000) | 10000000 | 10ms | 101ms | n/a | 9.65x | n/a | |
(1, 10000000) | 10000000 | 48ms | 95ms | n/a | 1.98x | n/a | |
(10, 10, 10, 10, 1000) | 10000000 | 10ms | n/a | n/a | n/a | n/a | |
(100, 1000, 1000) | 100000000 | 94ms | n/a | n/a | n/a | n/a | |
move_exp_nansum |
(1, 1000) | 1000 | 0ms | 0ms | n/a | 1.37x | n/a |
(10, 1000000) | 10000000 | 7ms | 66ms | n/a | 9.57x | n/a | |
(1, 10000000) | 10000000 | 32ms | 64ms | n/a | 1.97x | n/a | |
(10, 10, 10, 10, 1000) | 10000000 | 6ms | n/a | n/a | n/a | n/a | |
(100, 1000, 1000) | 100000000 | 215ms | n/a | n/a | n/a | n/a | |
move_exp_nanvar |
(1, 1000) | 1000 | 0ms | 0ms | n/a | 1.39x | n/a |
(10, 1000000) | 10000000 | 9ms | 91ms | n/a | 10.55x | n/a | |
(1, 10000000) | 10000000 | 42ms | 82ms | n/a | 1.97x | n/a | |
(10, 10, 10, 10, 1000) | 10000000 | 9ms | n/a | n/a | n/a | n/a | |
(100, 1000, 1000) | 100000000 | 160ms | n/a | n/a | n/a | n/a | |
nanquantile |
(1, 1000) | 1000 | 0ms | 0ms | n/a | 3.28x | n/a |
(10, 1000000) | 10000000 | 214ms | 257ms | n/a | 1.20x | n/a | |
(1, 10000000) | 10000000 | 218ms | 680ms | n/a | 3.12x | n/a | |
(10, 10, 10, 10, 1000) | 10000000 | 218ms | n/a | n/a | n/a | n/a | |
(100, 1000, 1000) | 100000000 | 2179ms | n/a | n/a | n/a | n/a |
Example implementation
Numbagg makes it easy to write, in pure Python/NumPy, flexible aggregation functions accelerated by Numba. All the hard work is done by Numba's JIT compiler and NumPy's gufunc machinery (as wrapped by Numba).
For example, here is how we wrote nansum
:
import numpy as np
from numbagg.decorators import ndreduce
@ndreduce.wrap()
def nansum(a):
asum = 0.0
for ai in a.flat:
if not np.isnan(ai):
asum += ai
return asum
Implementation details
Numbagg includes somewhat awkward workarounds for features missing from NumPy/Numba:
- It implements its own cache for functions wrapped by Numba's
guvectorize
, because that decorator is rather slow. - It does its own handling of array
transposes
to handle the
axis
argument in reduction functions. - It rewrites plain functions into gufuncs, to allow writing a traditional function while retaining the multidimensional advantages of gufuncs.
Already some of the ideas here have flowed upstream to numba (for example, an axis parameter), and we hope that others will follow.
License
3-clause BSD. Includes portions of Bottleneck, which is distributed under a Simplified BSD license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file numbagg-0.6.6.tar.gz
.
File metadata
- Download URL: numbagg-0.6.6.tar.gz
- Upload date:
- Size: 41.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 18b87fe27b4f0623170fbda3d124076db952013adc57128e559519ceefc16ad1 |
|
MD5 | 0a338df6a3381c525d4c05c2e6cc8deb |
|
BLAKE2b-256 | 82dd4b5ca5f88899debb626facacdcbdf7ca405845c373b0ff954659ba3a868c |
File details
Details for the file numbagg-0.6.6-py3-none-any.whl
.
File metadata
- Download URL: numbagg-0.6.6-py3-none-any.whl
- Upload date:
- Size: 37.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7225a5ed8fb4f037a2827b5a01327dd6fa30f5a094c3f2fc7ca0185c15d4403 |
|
MD5 | 1524083f476ef30980c904a4427790bf |
|
BLAKE2b-256 | ae4387870dc9006c603dd8b6fa04f0c942e4115065092a4e8658420625122b61 |